
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2001

Manifold based voltage stability boundary tracing,
margin control optimization and time domain
simulation
Yuan Zhou
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zhou, Yuan, "Manifold based voltage stability boundary tracing, margin control optimization and time domain simulation " (2001).
Retrospective Theses and Dissertations. 344.
https://lib.dr.iastate.edu/rtd/344

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/344?utm_source=lib.dr.iastate.edu%2Frtd%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, sbme thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations appearing 

in this copy for an additional charge. Contact UMI directly to order. 

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600 



www.manaraa.com



www.manaraa.com

Manifold based voltage stability boundary tracing, margin control optimization 

and time domain simulation 

by 

Yuan Zhou 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Electrical Engineering (Electric Power) 

Program of Study Committee: 

Venkataramana Ajjarapu, Major Professor 

Vijay Vittal 

James D. McCalley 

Degang J. Chen 

Scott Hansen 

Iowa State University 

Ames, Iowa 

2001 

Copyright © Yuan Zhou, 2001. All rights reserved. 



www.manaraa.com

UMI Number 3034242 

Copyright 2001 by 

Zhou, Yuan 

All rights reserved. 

UMI' 
UMI Microform 3034242 

Copyright 2002 by ProQuest Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

Graduate College 

Iowa State University 

This is to certify that the doctoral dissertation of 

Yuan Zhou 

has met the dissertation requirements of Iowa State University 

Major Professor 

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

iii 

TABLE OF CONTENTS 

LIST OF FIGURES ix 

CHAPTER 1. INTRODUCTION 1 

1.1 Industry Concerns about Voltage Stability 1 

1.1.1 Load Margin 1 

1.1.2 Optimal Margin Control 2 

1.1.3 Timing of Corrective Control 2 

1.2 Power System Voltage Stability 2 

12.1 Load Dynamics 2 

12.2 Major Issues in Voltage Stability Study 3 

1.3 Modeling for Voltage Stability Study 4 

1.4 Voltage Stability Analysis 5 

1.4.1 Power Flow Based Analysis 5 

1.4.2 Small-Disturbance Analysis 6 

1.4.3 Quasi-Steady-State Analysis (QSS) 

1.4.4 Large Disturbance Analysis 8 

1.5 Control Strategy 9 

1.5.1 Sensitivity Based Margin Control Optimization 9 

1.5.2 Nonlinear optimization of Margin Control 10 

CHAPTER 2. LITERATURE REVIEW AND SCOPE OF THE WORK 11 

2.1 Literature Review 11 

2.1.1 Bifurcation Viewpoint 11 



www.manaraa.com

IV 

2.1.2 Optimization Viewpoint 14 

2.1.3 Time Domain Viewpoint 15 

2.2 Scope of Work 17 

2.3 Organization of This Dissertation 20 

CHAPTER 3. POWER SYSTEM MODELING 21 

3.1 Formulation of Power System DAE model 21 

3.1.1 Synchronous Generator 21 

3.1.2 Excitation Control System 22 

3.1.3 Prime Mover and Speed Governor 23 

3.1.4 Nonlinear Load Model 24 

3.1.5 LTC Model 25 

3.1.6 HVDC Model 25 

3.1.7 Network Power Equations 29 

3.1.8 Modeling of Limit Constraints 30 

3.1.9 Power System DAE model 34 

3.2 Bifurcation Modeling of Power System Dynamics 35 

3.2.1 Saddle Node Bifurcation 36 

3.2.2 Hopf Bifurcation 36 

3.2.3 Comparison with Time Domain Simulation 38 

3.3 Manifold Models in Power Systems 38 

3.3.1 Manifold 38 

3.3.2 Natural Parameterization 39 

3.3.3 Local Parameterization 39 



www.manaraa.com

V 

3.3.4 Manifold Model in Power Systems 41 

CHAPTER 4. POWER SYSTEM EQUILIBRIUM TRACING WITH DETECTION OF 

BOTH SADDEL NODE AND HOPF BIFURCATIONS 42 

4.1 Natural Parameterization of Load Parameter Space for Power System Equilibrium 

Tracing 42 

4.2 Equilibrium Manifold of Power System and Transverse Difficulty 43 

4.3 Initialization of Power System Equilibrium Tracing 44 

4.4 Continuation Method with Local Parameterization 45 

4.5 Linearization of Power System DAE 46 

4.6 Detection of Saddle Node and Hopf Bifurcation with System Total Jacobian Matrix 

48 

4.6.1 Detection of Saddle Node Bifurcation 50 

4.6.2 Detection of Hopf Bifurcation without Eigenvalue Calculation 51 

4.7 Numerical Example 56 

4.7.1 Equilibrium Tracing with Detection of SNB and Hopf 56 

4.7.2 Computational Requirements Compared with Eigenvalue Calculation 57 

4.8 Summary 57 

CHAPTER 5. UNIFIED MARGIN BOUNDARY TRACING 59 

5.1 Introduction 59 

5.2 Natural Parameterization for Margin Boundary Tracing 59 

5.3 Formulation of Unified Margin Boundary Tracing 61 

5.3.1 Margin Boundary Manifold of Power System 61 



www.manaraa.com

vi 

5.3.2 Bifurcation Characterization 61 

5.3.3 Augmentation for Local Parameterization 64 

5.3.4 Differentiation of Cut Functions 65 

5.3.5 Unified Margin Boundary Tracing 67 

5.4 Saddle Node Bifurcation Related Margin Boundary Tracing 70 

5.4.1 Emergency Load Shedding 70 

5.4.2 Reactive Power Support 71 

5.4.3 Secondary Voltage Control 72 

5.4.4 Control Combination 72 

5.4.5 Multiple Contingencies 73 

5.5 Saddle Node and Hopf bifurcation Related Stability Boundary Tracing 74 

5.5.1 Boundary Tracing with Respect to Generation Control Parameters 74 

5.5.2 Boundary Tracing with Respect to Network Parameter Change 76 

5.6 Advantages of Unified Margin Boundary Tracing 78 

5.7 Summary 78 

CHAPTER 6. OPTIMAL MARGIN BOUNDARY TRACING WITH CONTINUATION 

OPTIMAL POWER FLOW 79 

6.1 Introduction 79 

6.2 Problem Formulation 80 



www.manaraa.com

vii 

6.3 Formulation of Optimal Margin Boundary Tracing 83 

6.3.1 Optimal Margin Boundary Manifold of Power System 83 

6.3.2 Characterization of Optimal Margin Boundary 83 

6.3.3 Optimal Margin Boundary Tracing with Continuation Optimal Power Flow 

84 

6.4 Optimal Margin Boundary Tracing Procedure 86 

6.5 Numerical Results 87 

6.5.1 Case 1 : Load Shedding 88 

6.5.2 Case 2: Control of Shunt Capacitance 89 

6.6 Summary 90 

CHAPTER 7. LOCAL PARAMETERIZATION BASED UNIFIED TIME DOMAIN 

SIMULATION 91 

7.1 Introduction 91 

7.2 DAE Modeling for Time Domain Simulations 92 

7.2.1 Multi-time-scale DAE Modeling 92 

7.2.2 Quasi-Steady State DAE Modeling 93 

7.2.3 Unified DAE Modeling of Power System Dynamics 94 

7.3 Formulation of Conventional Time Domain Simulation of Unified DAE 94 

7.3.1 Conventional Time Domain Simulation of Unified DAE 94 

7.3.2 Conventional Time Domain Simulation of Multi-Time-Scale DAE 95 

7.3.3 Conventional Time Domain Simulation of QSS DAE 96 

7.4 Local Parameterization Based Time Domain Simulation of Unified DAE 97 



www.manaraa.com

viii 

7.4.1 Initial Point of Piecewise Manifold 97 

7.4.2 Trajectory Predictor 97 

7.4.3 Trajectory Corrector 98 

7.4.4 Continuation Parameter Selection 99 

7.5 Local Parameterization Based Time Domain Simulation for Special Cases 99 

7.5.1 Multi-Time-Scale DAE 99 

7.5.2 QSS DAE 101 

7.6 Manifold Based Time Domain Simulation Procedure 103 

7.7 Numerical Simulation Results 105 

7.7.1 Results for Multi-Time Scale Time Domain Simulation 105 

7.7.2 Results for QSS Simulation 110 

7.7.3 Comparison with Margin Boundary Tracing 111 

7.8 Summary 111 

CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 113 

8.1 Conclusions 113 

8.2 Suggestions for Future Work 114 

REFERENCES 115 

APPENDIX 122 

ACKNOWLEDGEMENTS 127 



www.manaraa.com

IX 

LIST OF FIGURES 

Figure 2-1: Illustration of margin boundary tracing framework 13 

Figure 2-2: Optimal margin boundary tracing 15 

Figure 3-1 : The IEEE type DC-1 excitation system 24 

Figure 3-2: The simplified speed governor and prime mover 24 

Figure 3-3 : Capability curves (saliency and saturation neglected) 32 

Figure 4-1 : Flowchart for detection of Saddle node and Hopf bifurcations 55 

Figure 4-2: Hopf detection in PV curve tracing under base control 57 

Figure 5-1 : Flowchart of margin boundary tracing 69 

Figure 5-2: System load margin vs load shedding at bus 39 71 

Figure 5-3: System load margin vs shunt capacitance at bus 8 71 

Figure 5-4: System load margin vs Vref adjustment at all generator 72 

Figure 5-5: System load margin vs control combination steps: 

Vref39(0.001 pu),C8(0.1 pu),Q6(0.1 pu) 73 

Figure 5-6: System load margin vs multiple contingencies: line 8-9 and line 7-8 outage 74 

Figure 5-7:Unified margin boundary tracing versus Ka adjustment 75 

Figure 5-8: Unified margin boundary tracing versus Vref adjustment 76 

Figure 5-9: Unified margin boundary tracing versus load shedding 77 

Figure 5-10: Unified margin boundary tracing versus line outage 78 

Figure 6-1: Flowchart of optimal margin boundary tracing 87 

Figure 6-2: Marge boundary optimization comparison between OMBT and Linear 

Programming 89 



www.manaraa.com

X 

Figure 6-3: Margin boundary optimization comparison among OMBT, Linear Programming 

and, randomly chosen strategy (adding capacitance only at bus 20) 90 

Figure 7-1 : Locally parameterized time trajectory tracing 97 

Figure 7-2: Flowchart of manifold based time domain simulation 104 

Figure 7-3: Small disturbance time domain simulation 106 

Figure 7-4: Hopf bifurcation caused oscillation observed 106 

Figure 7-5: Line 8-9 is off at 80 sec 107 

Figure 7-6: Load shedding at 20 seconds after contingency 108 

Figure 7-7: Capacitance is on 20 seconds after contingency 109 

Figure 7-8: Line 8-9 is off at base condition with no load variation 110 

Figure 7-9: Quasi-Steady State simulation 111 

Figure A-1 : New England 39 bus system diagram 122 



www.manaraa.com

1 

CHAPTER 1 INTRODUCTION 

1.1 Industry Concerns about Voltage Stability 

I .I .I  Load Margin 

In an open access environment, less regulated power flow patterns and increased 

utilization of transmission facilities could more frequently violate system security conditions. 

Deterioration in system operating conditions makes the power system more vulnerable to 

disturbances. 

Deregulation brings new challenges for operating the power system. Independent 

System Operator (ISO) needs to monitor the system load margin in real time and close the 

power transaction deals based on the available system stability margin as well as other 

considerations in order to meet the quickly varying energy demand. How to efficiently 

extend the system margin by readjusting the system control configuration becomes an 

important part of the overall economic operation of the power system. 

In many cases, power is transferred via a highly stressed network. Voltage collapse 

and system oscillations, such as the Tokyo voltage collapse and Union Electric system 

oscillations [18] under heavy loading conditions, appeared in many reports. 

Meanwhile a stressed system is vulnerable to be overloaded by a contingency, which 

causes the system voltage stability margin to shrink and could endanger a system even if it 

has survived the transient dynamics. Therefore, the voltage stability margin needs to be 

monitored. 
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1.1.2 Optimal Margin Control 

How to efficiently extend the system margin by readjusting the system control 

configuration is also the major aspect of power system operational security. With FACTS 

devices widely applied in modern power systems, the capability and range of control are 

increased. Selection of cost efficient control then becomes an important part for economic 

operation of power systems. 

Voltage stability constrained margin monitoring and optimization will provide 

indispensable control information for a modern power system Energy Management System 

(EMS). 

1.1.3 Timing of Corrective Control 

Load dynamics plays an important role for corrective control against voltage collapse. 

References [17,18] brought the timing issue into the concern of corrective control against 

voltage collapse. The amount of corrective control needed to save the system from voltage 

collapse depends on the timing of the control. The amount of required control increases 

dramatically if the time of the control is beyond the critical time [18,20]. 

1.2 Power System Voltage Stability 

1.2.1 Load Dynamics 

Generator angle stability was proposed and studied earlier than voltage stability. In 

general, rotor angle stability centers on the dynamics of generators and their regulators, 

whereas voltage stability centers on load dynamics. However in transient time scale, 

sometimes it is difficult to separate these two instabilities. 

Due to the complexity of load characteristics, load dynamics may involve quite 

different time scales. For daily load variance, load dynamics is relatively slow compared to 
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rotor angle dynamics so that it could be modeled as a steady state variable. In this case, 

bifurcation theory could be applied with a steady state load variable as bifurcation parameter. 

Note that bifurcation theory could only be introduced with steady state variable as bifurcation 

parameter to characterize the dynamics of other dynamic variables. That is, the prerequisite 

of the bifurcation model is that the derivative of the bifurcation parameter equals zero. 

For some of the loads, load restoration dynamics tend to restore their consumed 

power in the time frame of a second [5]. The load dynamics may relate to induction motors, 

HVDC. Since the time scale of this kind of load dynamics is close to rotor angle dynamics, 

load could no longer be taken as a steady state variable. Therefore bifurcation theory based 

voltage stability analysis may fail in this case. Multiple time scale based time domain 

simulation then becomes the basic tool to study transient load induced voltage stability. Since 

the critical corrective control time depends on load restoration dynamics, multiple time scale 

time domain simulation is also indispensable to design corrective control. 

1.2.2 Major Issues in Voltage Stability Study 

Considerable research has been devoted to many aspects of the voltage stability 

problem. The study can be classified as off-line or on-line according to the time scale of 

interest. Off-line voltage stability studies serve for operation planning. A longer time interval 

is required so that the computationally intensive analysis can be obtained. On the other hand, 

on-line voltage stability studies are needed for operation monitoring, alert, and instant 

decision support. On-line studies need to be computationally efficient to satisfy the 

demanding time requirement. Both of on-line and off-line studies share the following 

common key issues. 
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• Analysis tools are used to understand the mechanisms of the voltage instability and 

make planning or operation decisions based on reliable simulations. Power flow 

based analysis, small-disturbance analysis, quasi-steady-state analysis, and time 

domain simulation are the major tools that can be selected to perform voltage stability 

analysis of the system. 

• Indices could be used on-line or off-line to help operators determine to what extent 

the system state is secure or dangerous. The criteria of those indices could be 

specified for the system security assessment. Linear indices, such as load margin, are 

more preferable than nonlinear ones. 

• Control strategy is needed to mitigate voltage collapse, extend the stability margin, 

and economically dispatch while maintaining the margin requirement for security. In 

case the system is experiencing voltage instability, remedial control actions should be 

taken to effectively bring the system to a stable post-disturbance operation point. 

The following sections briefly present the background of the thesis work regarding to 

the key issues mentioned above. 

1J Modeling for Voltage Stability Study 

Nonlinear load characteristics may drive the system to voltage collapse. Voltage 

regulating mechanisms on the generator side may lead the system to oscillatory instability. 

The interaction between rotor dynamics and induction motor dynamics may lead to 

oscillatory instability via Hopf bifurcation or voltage collapse via Saddle node bifurcation. 

Tap changer dynamics also have an effect on voltage stability as part of the mechanism of 

load restoration. 



www.manaraa.com

5 

Key devices that may have significant impact on system voltage stability were 

recognized[l]. They include: 

• Load increase or restoration characteristics, 

• Tap changers, 

• Generator field current (over excitation) and armature current limiters, 

• AVR (primary and secondary voltage regulation including line drop compensation), 

and 

• HVDC control characteristics. 

Properly modeling of above components is imperative for accurate voltage stability 

analysis. 

1.4 Voltage Stability Analysis 

Different voltage stability analysis tools are needed corresponding to the type of 

concerned disturbance, output information, and computational time requirement. 

1.4.1 Power Flow Based Analysis 

Basically power flow is the approximation of power system steady state under several 

assumptions, such as 

• Bus types: PV bus, PQ bus, slack bus. 

• Active and reactive power generation limits, and 

• Constant power load. 

Originally, power flow was used as a computationally effective way to determine 

power system network status under normal operation condition. Power flow based voltage 

stability analysis was first proposed. The voltage collapse point was determined by observing 
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power flow divergence corresponding to a singular Jacobian matrix. However, if the system's 

condition was close to a critical loading, conventional power flow calculations based on the 

Newton-Raphson method encountered numerical problems. Therefore, additional special 

techniques were designed and implemented based on traditional power flow programs. The 

continuation method [921,22] and direct method [2] have been developed to overcome these 

numerical problems. 

Even though the numerical difficulty could be avoided by the continuation power 

flow[9], the power flow based analysis has the following disadvantages, due to the 

inaccuracy of modeling. 

• Power flow based analysis is dependent on an approximated model ignoring the 

dynamic aspect of the generation and load components. 

• Bus type assumptions are unrealistic. 

• Limit constraints are not accurate enough for study system stability behavior. 

• Power flow based analysis does not provide enough information for nonlinear 

dynamic phenomena other than maximum loadability. 

These observations indicate that the criteria based on power flow based voltage 

stability analysis may not be accurate or may even be too optimistic. Thus, including proper 

dynamic models of the key devices may provide more accurate voltage stability analysis. 

1.4.2 Small Disturbance Analysis 

Based on the full-pledged component dynamic model, the aim of small disturbance 

voltage stability analysis is to determine whether a suggested operating point of a power 

system will remain stable with respect to a small disturbance when the system load level is 

increased. 
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To achieve this goal, the original nonlinear dynamical equations are linearized about 

a specified operating point, and the system matrix is calculated. Eigenvalue analysis could be 

conducted to provide stability related information. The eigenvalues of the system matrix 

determine the dynamic behavior of the system response to small disturbances. The 

corresponding right and left eigenvectors define the shape of the corresponding modes of 

response. This analysis provides helpful information on both the proximity to and the 

mechanism of voltage instability. However, eigen-calculation is computationally intensive. 

Recently, local bifurcation theory [9,11.12,15,2226] has been applied in small disturbance 

analysis for the determination of the stability margin. 

1.4.3 Quasi-Steady-State Analysis (QSS) 

Quasi-Steady-State analysis is a simplification of multi-time-scale time domain 

dynamic analysis. The fast-slow time scale decomposition [5,18] is conducted to apply the 

singular perturbation analysis. Slow dynamics, such as load restoration characteristics and 

LTC. are distinguished from fast dynamics. The stiff problem associated with multi-time-

scalc time domain simulation is avoided. 

However, there is inherent limitation on QSS. QSS is valid only under the following 

assumptions. 

• A stable fast dynamical equilibrium exists after the disturbance. 

• For large disturbances, pre-disturbance state of the system must also belong to the 

attraction region of the post-disturbance equilibrium of fast dynamics. 

• Oscillatory instability of fast dynamics could not be observed. 

• The interaction of load dynamics and other fast dynamics could not be observed. 
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1.4.4 Large Disturbance Analysis 

Although classical voltage instability evolves over several minutes, the possibility of 

transient voltage instability also exists because of the characteristics of fast-response system 

components. When a large disturbance occurs in the system, the phenomena are usually 

analyzed by transient stability programs which include fast dynamic models, such as 

induction motors. 

Voltage instability often occurs due to system dynamics of the order of tens of 

seconds to minutes. Dynamics include increase of load, recovery of load after disturbances, 

and power coordination following a loss of generation. Several approaches that are based on 

long-term time simulation have been developed. The time simulation is valuable in 

determining and demonstrating the time sequence of control and protection actions with any 

size of disturbance. In addition, time domain simulations are capable of studying the overall 

system stability and are not limited to voltage stability. 

The most general method for transient and long-term analysis involves unified 

solution of fast (transient) and slow (longer-term) dynamics. Simultaneously solving long-

term equations with short-term equations makes the problem stiff. A stiff problem is one in 

which the underlying physical process contains components operating on widely separated 

time scales, or the dynamics of some part of the process are very fast compared to the long-

term time interval. Stiffness is measured by the ratio of the largest to the smallest eigenvalue. 

A fixed small time step size is needed for capturing short-term dynamics. While this 

mitigates numerical difficulty, it still has its disadvantages. It generally requires extensive 

output analysis to uncover the causes that contribute to voltage instability. Although 
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numerical integration techniques have become more efficient, the conventional time domain 

dynamic simulations for long periods of time remain very computationally intensive. 

Some programs use various time steps to simulate the system behavior in different 

time frames. A well known step size control strategy is by control of the Local Truncation 

Error (LTE)[5], This control scheme is applied in EUROSTAG software[49]. However, it is 

costly to achieve the higher order derivative information of all the dynamic variables which 

are needed to estimate the LTE, especially for the power system DAE model. 

13 Control Strategy 

In power system planning and operation studies, the detection and prediction of 

voltage collapse is only part of the work facing the engineers. To avoid voltage collapse, it is 

necessary to investigate the contributing factors that lead to voltage instability. Effective 

controls need to be designed to prevent the system from collapse. Information about what 

controls are effective and where to apply them is useful. Based on the optimization 

technique, the control strategy could be divided into the following two categories. 

1.5.1 Sensitivity Based Margin Control Optimization 

Sometimes sensitivity is defined for evaluating general system performance, such as 

parametric sensitivity. It indirectly relates to stability since system degradation eventually 

will lead to collapse if no preventive measure is applied. More often, the sensitivity is 

defined with respect to certain stability indices, which are intended for determining the 

degree of stability. The stability index can be based on a given state, requiring only 

information from the current operating point, or based on large deviation, which also requires 

the knowledge of the critical point The latter accounts for nonlinearities caused by larger 
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disturbance or load increase. A link between a given state index and a large deviation-based 

index is needed if it is desired that the sensitivity can be used quantitatively to predict the 

effectiveness of the particular controls applied. Using this kind of quantitative sensitivity 

measure, one will then be able to further apply the methodology to estimate transfer margin 

as limited by voltage collapse, without actually re-computing the PV curves[25,ll,26]. 

Further, if system dynamics is of concern, the sensitivity of a stability index should be 

defined with respect to the DAE model of the system[l I]. 

Optimization in conjunction with margin sensitivity could be formulated to seek the 

most effective and efficient control strategy. In most cases, linear programming or quadratic 

programming is employed [51.53]. The limitation of the approach is due to the difficulty of 

taking into account the component limit constraints and higher order nonlinearities. 

1.5.2 Nonlinear Optimization of Margin Control 

Margin boundary in multi-control parameter space is highly nonlinear. Nonlinear 

optimization of margin control, which is subject to limit constraints, is in demand to seek the 

optimal control in a wide control range. However, there is still a challenge from the 

numerical difficulty associated with solving optimization problems in heavy load condition. 

As part of this thesis work. Continuation Optimal Power Flow (COPF) is proposed to 

overcome the numerical difficulty. 
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CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE WORK 

2.1 Literature Review 

We reviewed the literature related to our work based on the following aspects: 

• Bifurcation viewpoint 

• Optimization viewpoint 

• Time domain viewpoint 

2.1.1 Bifurcation Viewpoint 

Voltage collapse and oscillatory instability due to small load variations are inherently 

nonlinear phenomena that could be modeled by bifurcation theory from the perspective of 

parametric nonlinear dynamic systems. Substantial research has been conducted to help 

understand and analyze the mechanism of those types of instability based on bifurcation 

theory. 

Voltage collapse is related to Saddle node bifurcation (SNB). during which system 

equilibrium disappears as system parameters, mostly system load, change slowly [1-3.5.6]. in 

recent decades, several blackouts have been recognized to be related to Saddle node 

bifurcation [3]. 

Oscillatory stability is another aspect of power system operational security. 

Oscillatory stability is related to Hopf bifurcation [38]. The improper tuning of generation 

control parameters may lead to Hopf bifurcation [24.3235]. Nonlinear load may also lead to 

Hopf bifurcation [12]. References [6,33,34] presented analysis related to a 1992 disturbance 

on the midwestem segment of the US interconnected power system and the resulting 

oscillations caused by line tripping. It confirmed that the event was indeed related to a Hopf 
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bifurcation. Continuation based approaches have been proposed to identify these critical 

points [9,10,14,15,16,21,22], 

Load margin is a reasonable measure of proximity to the bifurcation related 

instability. It is defined as the amount of additional load on a specified pattern of load 

increase that would cause power system instability. From this total load margin increase, the 

margin at individual load buses can be easily calculated from the load distribution factors. 

Since real power of load increase is often under concern in power system operation, the load 

margin is presented in MW corresponding to a specified loading scenario. 

The load margin can be obtained in a variety of ways. The trivial way to obtain a new 

margin is to retrace the PV curve for the given contingency and scenario. Obviously this 

method is time consuming and less informative. References [1123,25,26,46,47] focused on 

Saddle node bifurcation related to voltage stability margin estimation based on linear or 

quadratic margin sensitivities. Retracing of the entire PV curve for each parameter change 

was avoided. Dobson et al in [24] studied the sensitivities of Hopf bifurcation for various 

power system parameters. Margin sensitivity based methods are very useful for a quick 

calculation of the margin for a given change in any parameter. But the prominent sources of 

inaccuracy inherently associated with margin sensitivity methods make a significant impact 

on the reliability of the margin estimation. Parameter change, sometimes due to a 

contingency, may not be within a small range and hence higher non-linearity could not be 

neglected [21]. 

Oscillatory stability needs to identify critical eigenvalues. The methodologies for the 

calculation of critical eigenvalues for power system dynamic stability analysis have been 

summarized and compared in [56]. Preconditioning and iteration are the significant 
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components of those algorithms. Several preconditioning techniques have been presented, 

such as Shift-Invert Transformation, Cayley Transformation and Chebyshev Transformation. 

The major solution methods have been also presented, such as Power Iterations, Rayleigh 

Quotient Iterations, Newton, Subspace iteration and Arnoldi method. Those methods are all 

iteration based and involves a great volume of computation. 

Venkatasubramanian et al in [33,34] presented iterative algorithms that calculated the 

Hopf bifurcation related segment of the feasibility boundary for a realistically large power 

system model. The method applied bilinear transformation of system Jacobian matrix and 

power method to calculate the dominant eigenvalue. A large volume of calculation associated 

with eigen-analysis and complicated transformation still existed. 

In chapter 5, this thesis presents a framework based on a differential manifold 

approach [36.40] that combines the identification and tracing of both Saddle node and Hopf 

bifurcation margin boundaries without calculating any eigenvalues. For a given base case, we 

first identify either saddle node or Hopf bifurcation. Then for any given control change 

Real margin 
boundarv 

Boundary predictor 

Boundary corrector 

û Load 

Figure 2-1 : Illustration of margin boundary tracing framework 
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scenario, we can further trace the change in Saddle node or Hopf bifurcation margins. Fig. 2-

I shows the conceptual diagram of margin boundary tracing. 

2.1.2 Optimization Viewpoint 

As was mentioned in the previous section, prominent sources of inaccuracy 

inherently associated with margin sensitivity methods make a significant impact on the 

reliability of the margin estimation and control. In essence, 

• Single point local sensitivity information has its limitations in seeking a global 

optimal control solution. Linear (or high order, practically limited to no more than 

quadratic) sensitivity information is obtained by a Taylor series expansion at the 

system margin point (critical point). Note that the parameter change, sometimes 

due to contingency, may not be within a small range and therefore the higher 

nonlinearity could not be neglected. 

• The effect of system limits may lead to a discontinuous change in margin. 

Due to the heavy nonlinear behavior shown by the stressed power system, nonlinear 

analysis and nonlinear global (practically, within a certain physical arrange) optimal control 

solutions are. in essence, required by the nature of non-linearity demonstrated by the systems 

near the voltage stability boundary. 

There is an inherent relationship between the maximum Ioadability and Saddle node 

bifurcation in a load parameterized power system [5]. There has been a great amount of effort 

made to optimization based voltage stability analysis. Under certain conditions, the 

singularity problem could be avoided. But the difficulty of identifying an active constraint set 

and the possibility of divergence still exists, especially when parameter variance is not within 

a small range. 
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The Galiana group published a series of papers [27-31] on the optimal power flow 

based on the homotopy type continuation method. It could trace the optimal solution along a 

certain system scenario, based on optimization formulated with power flow equations. 

However, the algorithm may diverge when the sequential specified load level is close to the 

largest feasible load margin. The largest feasible load margin is the largest load margin a 

system could achieve within the control limits and security constraints. 

Optimal margin boundary tracing, proposed in this thesis, avoids this divergence. 

Fig.2-2 shows a conceptual diagram of the optimal margin boundary tracing proposed in this 

paper, where ui and u2 are control parameters: mo....mi indicate the voltage stability 

margins. 

Real optimal control 
configuration at 
each margin level Opumali ty corrector 

Optimality predictor 

Ui 

Figure 2-2: Optimal margin boundary tracing 

2.1.3 Time Domain Viewpoint 

The interest in voltage collapse evolution and the timing of corrective control brings 

in the third aspect of voltage stability analysis, time domain simulation. Time domain 
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simulation is among the major supporting tools for power system analysis. A variety of 

algorithms have been proposed for power system transient stability analysis. 

A time domain solution of a large set of coupled algebraic and ordinary differential 

equations is an important tool for many applications in power system analysis. Time domain 

simulation techniques are widely used for power system analysis because of their versatility 

and accuracy. The set of equations is usually formulated as a set of differential algebraic 

equations (DAE) [5.6]. 

The time horizon for voltage instability dynamics varies from seconds to minutes [3]. 

The timing of corrective control is vital for the restoration of system stability [16.17], Thus, 

transient stability and long term stability analysis have to be combined in a single program to 

simulate the interaction of load dynamics with generator side fast dynamics. 

In recent years, a large amount of effort has been spent in this direction [41-45]. The 

stiff problem is solved by the use of variable step size and variable order integration 

algorithms. But time domain simulation algorithms with adaptable step size still encounter a 

divergence of solutions close to the voltage collapse point Time scale decomposition is 

applied to mitigate the stiff problem. As a simplification, the quasi-steady-state DAE model 

was investigated in [17.18.19.20]. However, the divergence of solutions of short-term 

equilibrium at the neighborhood of voltage collapse still cannot be avoided. 

So a more competent time domain simulation algorithm is demanded for more 

reliable and accurate dynamic voltage stability assessment and validation of corrective 

control against voltage instability. 
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In chapter 7. we propose a numerically well-conditioned local parameterization based 

time domain simulation to solve both power system multi-time scale and the quasi-steady-

state DAE. 

2.2 Scope of the Work 

The manifold based methodologies presented in this thesis facilitate the analysis 

contributing to fast margin monitoring, margin control and timing of the control. 

The salient features of the approach are given below: 

• Fast detection of Hopf bifurcation 

With only solving tangent vector of the test matrix: a linear transformation of 

system total Jacobian matrix, the Hopf bifurcation is easily detected by observing the 

sign change of a scalar index in the tangent vector without eigenvalue calculation. 

Time consuming calculation associated with eigenvalue is avoided. 

• Fast determination of voltage and oscillatory stability margin 

Continuation method is the most reliable method applied in determination of load 

margin for large-scale power systems. It is used in a single parameter tracing on one 

dimension manifold with the introduction of only one parameter (usually the loading 

parameter under a specified loading scenario). However, it is really time consuming 

to get a new voltage stability margin for every change of control configuration by 

retracing the entire PV curve from the base case (or operating point for online load 

margin monitoring). It may not be suitable for on-line voltage stability assessment. 

Based on manifold and bifurcation theory, a unified formulation for a variety of 

bifurcation related voltage stability margin boundary tracing in multi-parameter space 

is originally proposed. The bifurcation related margin boundary could be traced along 
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any control scenario in multi-control parameter space combined with any given 

loading scenario. This is achieved by moving from one boundary point to the next 

without re-tracing the entire PV curve. This paves the way for online voltage stability 

assessment. 

The unified boundary predictor-corrector-identifier tracing framework is 

originally employed to trace both voltage collapse and oscillatory stability margin 

boundaries, which are limited by Saddle node and Hopf bifurcations, respectively. 

• Optimal Margin Boundary Tracing with Continuation Optimal Power Flow 

Continuation optimal power flow traces optimal control to maintain specified load 

level. Whenever the specified load level is beyond the current margin boundary, the 

optimal control for extended margin boundary is calculated. Then it becomes 

optimization on voltage stability margin boundary manifold and actually optimal 

margin boundary tracing is conducted. It could automatically generate a cost based 

optimal control solution corresponding to a specific margin level. 

• Local Parameterization Based Unified Time Domain Simulation 

The timing of control makes a great difference in term of the amount of control. 

The type and amount of control the system needs to survive is quite dependent on 

control time and load recovery characteristics. During this process both short-term 

dynamics and long-term dynamics could affect the system. A unified local 

parameterization based time domain simulation algorithm is proposed. It could be 

applied in multi-time scale DAE to capture both fast and slow dynamics. It also could 

be applied in QSS DAE to capture both long-term dynamics and the exact short-term 

voltage collapse points. 
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Based on local parameterization, the numerical problem associated with power 

system DAE under heavy load condition could also be avoided. 

This local parameterization based time domain simulation could adapt time step 

size right according to the variant rate of derivative of dynamic variable and network 

variable. It employs a larger integration time step size for slow dynamics and smaller 

step size for fast dynamics. 

Analysis from any of the above perspectives finally results in the solution of a set of 

corresponding nonlinear equations. Numerical difficulty is always the critical problem when 

solving those highly nonlinear equations. Based on the differential manifold concept, a 

variety of natural and local parameterizations are proposed and applied in this thesis. 

Note that the natural parameter introduced into the equation system does not have to 

be a bifurcation parameter. 

• In the perspective of bifurcation, the load level scalar is introduced as bifurcation 

parameter, and thereby local parameterization is applied to trace either the 

equilibrium manifold or margin boundary manifold. 

• In the perspective of optimization, the load level is a direct bifurcation parameter 

associated with a set of equations originated from the DAE system. However, it is 

the natural parameter introduced to the equations coming from the optimally 

condition. Therefore, local parameterization could still be applied to trace the 

optimal margin boundary. 

• In the perspective of time domain, the integration time step size is not a 

bifurcation parameter at all. But it is the natural parameter associated with the 

solving of a set of nonlinear equations that come from the constraints of the 
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integration, a piecewise manifold. Therefore local parameterization could still be 

applied to solve for this natural parameter: integration time step size on each of 

the piecewise manifold. Thereby numerical problems associated with the DAE are 

avoided. 

2 J Organization of This Dissertation 

Chapter 3 addresses the modeling of power systems for equilibrium tracing, margin 

boundary tracing, margin control optimization and time domain simulation. 

Chapter 4 and chapter 5 address voltage stability from the perspective of bifurcation. 

Chapter 4 presents power system equilibrium tracing with detection of both Saddle 

node and Hopf bifurcations. Note that Hopf bifurcation is detected with computationally 

efficient methods without eigenvalue calculation. 

Chapter 5 presents the unified margin boundary tracing framework and its application 

to Saddle node and Hopf bifurcations. 

Chapter 6 addresses voltage stability from the viewpoint of optimization. Margin 

control optimization with continuation optimal power flow is presented. 

Chapter 7 addresses voltage stability from the perspective of time domain. Local 

parameterization based time domain simulation is presented. Unified algorithm is presented 

that could be applied in both multi-time scale and quasi-steady-state (QSS) time domain 

simulation to avoid numerical difficulty. 

All numerical results are demonstrated with the New England 39 bus system. 

Chapter 8 concludes the thesis. 
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CHAPTER 3 POWER SYSTEM MODELING 

3.1 Formulation of the Power System DAE model 

A power system is assumed to have n buses and m generators. Each generator is 

assumed to be equipped with the same type of excitation control system and speed governor. 

The formulation of power system modeling is presented in this chapter. The most commonly 

used power system notations are adopted here. 

3.1.1 Synchronous Generator 

Without loss of generality, the rotor angle of the generator is chosen as the system 

angle reference. This choice of reference is different from the conventional slack bus 

selection. No assumptions are necessary for choosing such a reference. When stator 

transients are ignored, the two-axis model [4.48] describing the synchronous machine 

dynamics can be given as: 

ô = ( tu, - (um )o)0 '= I m ~ ' (3.1) 

W,  =U; X [P M  -M„) - (£„  - (EJ ,  

Z = 1 m (3.2) 

K. =Lo,[fw-f„ -('L '-OU / = l m (3-3) 

K, =7-;„',[-4 +(%„ -KKl /=l m (3.4) 

where oj„ is the system frequency, a), is the machine frequency, namely, generator 

angular speed and (On is the system rated frequency (377.0 rad /sec). Id, and Iqi are direct axis 
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and quadrature axis currents respectively; and £^, are transient direct axis and quadrature 

axis EMF respectively; Tjq, and TQo, are direct axis and quadrature axis open circuit time 

constants respectively: X'M and X'QT are direct axis and quadrature axis transient reactances 

and Rs, is armature resistance of the machine: .if, is inertia constant and D, is the damping 

constant of the machine. All the quantities are per unit except wo-

Interface voltage equations to the network are given as follows: 

EQT = VT cos(5, -6,) + R„IQI + XJ,IDL (3.5) 

4  = r ,sin(8,- 9 ,  ) + RJDL-XQIIQT (3.6) 

where V, and Q, are bus voltage and angle respectively. 

The machine currents lj, and Iq, can be eliminated by solving the generator interface 

equations to the network. Hence. 

LAI =[R„EJi+E^,-RJ, sin(5,  -6,)-^r cos(ô, -e,)]<'  (3.7) 

L  = [ / ? „ £ „ - R J S  cos(6; -0,)-^Ksin(ô, (3.8) 

+ (3.9) 

Note that (3.1) does not include the differential equation for and that all the angles 

here and henceforth are relative angles with respect to the m* generator's rotor angle. 

3.1.2 Excitation Control System 

The simplified IEEE type DC-1 excitation system [4] as shown in Fig.3-l is used 

here. The corresponding mathematical model is 

E* =C[r -[$„(£*)]£*] /=l.—m (3.10) 
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K -/?„)] /=l m (3.11) 

If 

VNMN ^ V„ 5 VNM, VPA, =0 (at steady state ) 

R„ =T~ l[-R„ ~[K„ + SjE ( J t))KuE l d l  !T„+K fV„ >TJ 

z' = l m (3.12) 

where Vnf ,  is the reference voltage of the automatic voltage regulator (AVR): V„ and 

RF, are the outputs of the AVR and exciter soft feedback: E/J, is the voltage applied to 

generator field winding: TA„ TIT and TF, are AVR. exciter and feedback time constants: KA„ KEI 

and Kf, are the gains of AVR. exciter and feedback: min and K„.max are the lower and upper 

limits of Vn .  

3.1.3 Prime Mover and Speed Governor 

Fig. 3-2 shows the block diagram for a simplified prime mover and speed governor. 

Two differential equations are involved to describe the dynamics when no n, limit is hit. 

^,=0,-0 < = l m (3.13) 

K -(w, -co„,)//Z,-g,] if gin]m <n, <\iimxx 

t = l m (3.14) 

where PVI = P°,(l + K^fi) is the designated real power generation: is its setting 

at base case: is the generator load pick-up factor that could be determined by AGC. 

EDC or other system operating practices: PMI is the mechanical power of prime mover and 
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H, is the steam valve or water gate opening; R, is the governor regulation constant, 

representing its inherent speed-droop characteristic; ti)„, (=1.0) is the governor reference 

speed; TCH, and TG, are the time constants related to the prime mover and speed governor 

respectively: g, mm and g, max are the lower and upper limits of p.. where a parameter g is 

introduced to designate the system load level. At the base case. p. equals zero. 

r.max 

AVR with limits 

T.S 

K 

Figure 3-1: The [EEE type DC-1 excitation system 

pi max 

ret 

Speed governor Prime-mover 

Figure 3-2: The simplified speed governor and prime mover 

3.1.4 Nonlinear Load Model 

The voltage and frequency dependent load is modeled as follows for all the load 

buses. 
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P„=P lJK'V,orV + K l pA(um-u r)} 

Q„=Q l lQ(V,/V i 0t[\ + K l iV ,(um-u) r)} 
(3.15) 

where Pu0 and 0/,o are the active and reactive powers consumed by the load at the 

nominal voltage V, and frequency a), (=1.0). The frequency dependent term is included to 

prevent the equilibrium computation from divergence in case all the generators reach their 

maximum real power limits due to load increase or generator outages. Here Kip/ and Kiq! are 

the load changing factors with respect to system frequency. 

3.1.5 LTC Model 

Continuous on Load Tap Changer (LTC) model is taken. 

Assume there is an LTC between bus i  and j .  

r. =rF (3.16) 

where r is the ratio position of an LTC: t  is the number of LTC: V" is the reference 

voltage at the LTC regulated bus j: T, is the time constant. 

3.1.6 HVDC Model 

A simplified version of the AC/DC power flow [50] is incorporated in algebraic 

equations of the DAE modeling of power systems. This simple version, nevertheless, has all 

of the capabilities of established power flow methods. For this simplified version of the 

AC/DC power flow, the usual assumptions of continuous converter transformer tap. 

scheduled voltage control with a certain minimum control angle and fixed voltage margins at 

T,r = V" - V (3.17) 
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those terminals with a scheduled current or power control, as in established methods, are 

made. 

3.1.6.1 Basic equations 

The converter model is based on the relationship between the ripple-free average DC 

quantities and the fundamental frequency AC quantities. 

Based on the per unit system, the following equations can be written for every 

converter terminal. For the Ar,h converter, its DC voltage equation in terms of its tap ak. AC 

voltage Vk .  control angle commutation resistance /?<*. and the DC current Ijk is 

=aiVi cos5« - H.*1* (3.18) 

Its DC power equation is 

P, (3-19) 

Neglecting the losses in the converter and its transformer and equating the 

expressions for powers on the AC side and DC side, the equation obtained for its power 

factor angle (yr -ck ) is 

vm =aiVk costWi ~îk) (3.20) 

For the simple circuit representation of the converter transformer, the equation for the 

reactive power flowing from the AC bus into the converter terminal is 

Ok = P» tan«yt -çk ) (3.21) 

3.1.6.2 Converter controls equations 

A practical operating scheme for a multi-terminal DC system using local terminal 

controls is to have the DC svstem voltage determined at one terminal - the voltage 
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controlling terminal. The other terminals are provided with scheduled power or current 

settings. 

To keep the reactive power consumption of the converters and the losses in the 

snubber circuits low. the control and reliable commutation, a minimum control angle should 

be maintained. Typical values of the minimum ignition angle amm range from 5° to 7°. Those 

of the minimum extinction angle range from 15° to 20°. 

In most power flow methods, the voltage controlling terminal that is operating at the 

scheduled voltage Vjh is also assumed to be operating with a certain minimum control angle 

6mtt. Thus if the m terminal is the voltage controlling terminal, its DC voltage and control 

angle are 

and 

For the terminal with a scheduled current or power control, it is common practice to 

coordinate the tap control with the phase control so that the terminal will operate at some DC 

voltage below its own minimum ignition or extinction angle characteristic. This is done in 

order to avoid frequent mode shifts from occurring with normal AC voltage fluctuations. 

Typically, a 3% voltage margin is provided; with the average amn or 6mm given above, 

typical values of the control angles a and y are 15° and 20°. respectively, for those DC 

terminals with a scheduled current or power control. This typical voltage margin of 3%. in 

practice, can be considered in the power flow computation by modifying the DC voltage 

equations for such terminals with a coefficient of A>0.97. 
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Thus, if the k l h  terminal has a scheduled current control, its DC current is equal to the 

scheduled current . that is 

u =/r 

and its DC voltage equation is 

Similarly, if the terminal has a scheduled power control, its DC power is equal to 

the scheduled power PJ". that is 

and its DC voltage equation is also given by (3.22). 

3.1.6J DC network equations 

The equations for the DC network can be formulated to suit the procedure that is used 

to solve them. Since multi-terminal DC networks in the near future are unlikely to have 

greater than 30 buses, the present choice is the Rhus Gauss-Seidel method. 

Although the algorithm is applicable to a general bipolar network, there is no loss in 

generality by considering a symmetrically m-terminal bipolar system that can be 

economically represented as an equivalent m-terminal monopolar system. 

If the buses are numbered so that the m l h  terminal is the voltage controlling terminal. 

and its network terminal is also the reference bus for the Rhus, the voltage equations for the 

DC network of the equivalent m-terminal monopolar system can be written as 

ra=K,[*,%coser-&/a] (3.22) 

(3.23) 
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where r*,'s are elements of the DC network's Rhus with the terminal of the m,* 

terminal as its reference. 

Note that Vdm is the DC voltage at the terminal of the voltage controlling terminal: 

Vjm is equal to the scheduled voltage Vf'oî that terminal. 

3.1.7 Network Power Equations 

Corresponding to the above models, the network equations can be written as: 

Where 

P„=î.y>VkY<k c°si6, -9t -<p,<) 
*=i 

sin(6,-8t-(p,À) 
*=i 

z' = l n (3.25) 

and 

|P,, =/^sin(Ô, -0,) + / P.costf, -0.) 
\  f = 1 m (3.26) 
[Q„ = I J', cos(5, -0, )-/,/, sin(S,-0,) 

and are the generator output powers, which are primarily determined by the 

inherent characteristics of the speed governor and the AVR regulations. They will change if 

real power generation rescheduling and secondary voltage control are applied. P„ and Otl are 

the powers injected into the network at bus i. K,pi and are the load changing factors 

specified for bus i .  It should be noted that (3.24) is generic in the sense that it is used for all 

of the buses. 
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3.1.8 Modeling of Limit Constraints 

It is very important to adequately address the system limits when studying voltage 

stability. Voltage collapse often occurs as a consequence of some devices hitting their limits 

in a heavily stressed power system. For a synchronous generator, its real power output limit 

the armature current limit and the field current limit are especially important and should be 

appropriately considered, in this work, we take full advantage of the DAE formulation to 

accurately implement all of these three limits. Implementation of these limits is given in [10]. 

3.1.8.1 Generator real power limits 

The active power output of a generator is limited by equivalents enforcing the 

governor output limit Kmm orM-,.mn in (3.13-3.14). Once the governor output reaches its 

limit, the generator will no longer be allowed to pick up any additional load, and will stop 

participating in the system frequency regulation. In the meantime. # will stop being a state 

variable and become a control input and stay at its limits. 

3.1.8.2 Generator reactive capability limits 

In voltage stability analysis, it is important to consider the reactive capability limits of 

generators. Generators are rated in terms of the maximum MVA output at a specified voltage 

and power factor, that they can carry continuously without overheating. The continuous 

reactive power output is limited by the armature current and field current limits. Static 

voltage stability analysis using power-flow program usually assumes a fixed reactive power 

limit in simulations. However, the reactive power limit varies depending on the system 

operating conditions. 
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The generator capability curve is shown in Fig.3-3[6], It is a plot of P versus O. 

together with the limits corresponding to maximum turbine output and underexcitation 

limiter operation. Lines of constant armature current la appear as lines of constant. 

S = V,L (3.27) 

which are concentric circles around the origin. Lines of constant field current 

corresponding to lines of constant Ea are shown as circles of radius 

ES'.'X (3.28) 

centered on the point 

V1  

g = -r (3.29) 
"I t 

The armature current limit appears as the circle corresponding to the rated Ia or rated 

KVA. and the field current limit appears as a circle corresponding to rated fa-

Point R in Fig.3-3 corresponds to an operation at rated power. This is the intersection 

of the turbine and armature limits under rated voltage. In the case shown. Eai,m has been 

chosen so that the field limit also passes through point R. In practice the three different kinds 

of curves, although very close, may not intersect exactly. 

The figure also shows the effect of the terminal voltage. A larger terminal voltage 

yields a larger armature limit and a slightly larger field current limit as well. Any point that 

lies within both circles is a safe operating point for the generator. 
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Figure 3-3: Capability curves (saliency and saturation neglected)[6] 

3.1.8 J Generator field and armature current limits 

The reactive power output of a generator is dependent on its terminal voltage, which 

is controlled by the generator AVR. Hence, under normal conditions, the generator reactive 

power output can be adjusted by regulating AVR reference voltage. 

However, once the generator field current limit is reached, the AVR will lose its 

ability to maintain the generator terminal voltage, and the reactive power output can no 

longer be regulated. Here we show that the field current limits and the armature current limits 

both could be accurately represented by implementing the AVR output limits rn.max . Note 

that the field current limit here is referred to as the maximum allowable current for the 

generator at steady state, with the inverse-time acting characteristic neglected. 

The following conditions hold at a steady state with the saturation effects of the 

exciter ignored. 

+UL - -L )L = = -Vti, (3.30) 
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vn -(£„ +s<, )£« (3.31) 

Here Ev  is the generator internal induced quadrature axis voltage, which is 

proportional to the field current lfdr The state variable Vr, (AVR output) is also proportional 

to the generator field current. Thus the field current limit can be directly implemented 

by enforcing the fixed AVR output limit, denoted by 

^ n.max adi Itth.na\ . (3.32) 

When l'r, is fixed at a certain value, the reactive power will be limited indirectly, or at 

least not increased exponentially, when approaching voltage co!lapse[10]. 

Q„ m»x =[^™xf'l'V„cos(5, -8,)-K„ sin(Ô, -0,))-

r-(A\, cosiS, ) + Xj, sin:(5, -8j)]/(A^.^, 

Similarly, for the armature current limit, we can also indirectly implement it by 

enforcing the AVR output limit. 

The maximum limit for the generator reactive output with respect to the armature 

current limit can be determined as 

(3.34) 

Hence, when the current reactive power output Ogl is found greater than its allowed 

limit, it indicates that the armature current limit /a„ma.x. has been exceeded. To keep the 

armature current below its limit we can impose the AVR output limit to reduce the reactive 

power output. 

Since the system equilibrium solution varies when the AVR output limit is enforced, 

an iterative scheme is applied to update Vn.a.max at each continuation step so that the armature 
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current can stay within limits. In (3.33). the terminal bus voltage and angle are known from 

the previous iteration for a particular system loading level. 

Similar to the governor hitting its output limits, once the AVR reaches its output 

limit, either due to the generator field current limitation or due to the armature current 

limitation, the state variable V r )  will immediately become a control input, staying at V„ J  max  

or If we still solve the remaining equations that make up the DAE system with the 

same control inputs, there will be no solution. This is because when the system load further 

increases, in order to continuously keep V„ at the limiting value, the corresponding excitation 

reference voltage Vrell has to be reduced[lO]. The decrease of exciter reference voltage 

reflects the inability of the generator to keep pace with the load increase. Similar 

modifications are needed when a governor hits its limit. 

3.1.9 Power System DAE Model 

The above differential and algebraic equations are commonly known as a DAE 

representation of a power system. In a compact form, they can be simply denoted as 

The function F° describes the dynamics associated with the generators, the 

excitation systems, the prime movers and the speed governors. The function G° represents 

the network power balance equations. The state vector X. algebraic vector K. control vector U 

and parameter vector Z contain the following variables: 

x = F'\x.r.z.c) (3.35) 

o = G'Ux.r.z.d (3.36) 

X = ( S.oj. E r  Ed .  Pm . // .  £ t i .  V r .  R f  ) 

Y = (V.8). U =(V r t f .Pe t .—). Z = (P,.Q,) 
(3.37) 
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In short X contains all the system state variables; Y includes the algebraic variables: 

U is the control vector, whereas Z characterizes system loading condition. 

3.2 Bifurcation Modeling of Power System Dynamics 

For a dynamic system, parameterized by a single or a set of static parameters, 

bifurcations occur when the character of equilibrium changes within an arbitrary small local 

neighborhood of a critical parameter set. These static parameters are defined as bifurcation 

parameters. Note that the prerequisite condition of bifurcation parameters is that their 

derivatives always equal zero. That is. they are out of the dynamic variable set that 

characterizes the system state. 

The bifurcation model has been introduced into voltage stability analysis. Load driven 

system instability is studied with load condition related parameters, such as constant load or 

nominal value of voltage dependent load, chosen as bifurcation parameter u. 

In a power system DAE model, a change in equilibrium character with respect to 

bifurcation parameter is often effectively studied by analyzing changes in the eigenvalues of 

= F" -  )"' G'l in response to parameter variations. 

The various types of bifurcation points will generally form surfaces or manifolds in a 

multidimensional parameter space. These surfaces serve as boundaries in the parameter space 

separating regions wherein a certain type of system operation (as characterized by equilibria 

and trajectories) persists. A point on such a surface can be identified by a single bifurcation 

parameter M-Mn- These bifurcations are classified as codimension one. Only codimension 

one local bifurcations are discussed here. 
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There are two major codimension one bifurcations studied in power system dynamics. 

They are Saddle node bifurcation and Hopf bifurcation. 

3.2.1 Saddle Node Bifurcation 

When Saddle node bifurcation occurs, the Jacobian matrix of the system .4n,(^) has 

a simple eigenvalue and there is no other eigenvalue on the imaginary axis. The equilibrium 

ceases to exist when pi moves beyond //„. Correspondingly, in the state space x. two 

equilibriums approach each other as // approaches ; then at //0 they merge in a 

nonhyperbolic equilibrium (with a zero eigenvalue). 

Under certain additional transversality (non-degenerate) conditions, the presence of 

the simple zero eigenvalue of the Jacobian essentially characterizes this bifurcation. In 

second-order systems, this bifurcation corresponds to the annihilation of a saddle point and a 

node, hence the name saddle-node bifurcation. 

3.2.2 Hopf Bifurcation 

When Hopf bifurcation occurs, the Jacobian matrix An, of the system has a simple 

pair of purely imaginary eigenvalues and there are no other eigenvalues on the imaginary 

axis. As the parameter changes, certain inequality conditions need to hold. These ensure that 

this pair of critical eigenvalues crosses the imaginary axis. They can be formulated as 

t—Re[z(/i)]#0 
d f i  

where Re(X) denotes the real part of the eigenvalue which moves across the 

imaginary axis, and d/d//denotes the derivative with respect to the bifurcation parameter p.. 
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Typically, this means that for fx * //0the system has an equilibrium and a closed 

trajectory; a limit cycle exists near this equilibrium for one side of the parameters. This limit 

cycle can be unstable (or stable), that is, trajectories diverge (converge) from (to) it. from 

both the inside and the outside. The inside trajectories converge to (diverge from) a stable 

internal equilibrium point. As (X approaches the critical value. //„. the limit cycle shrinks into 

the stable equilibrium within. After passing //„. only the unstable region outside the limit 

cycle survives, now a regular (hyperbolic) unstable equilibrium point. Hence the local effect 

is that the stability of the equilibrium at the origin is destroyed at //0. Conversely, there may 

be an unstable equilibrium surrounded by a stable limit cycle in the right-half plane, and a 

single real stable node on the left. This. then, is known as a supercritical Hopf bifurcation. 

Therefore, the supercritical Hopf bifurcation corresponds to a transition in the system 

operating condition, from a small-signal stable equilibrium point for fi < to a small-signal 

stable limit cycle for u > • That is. when the system undergoes a supercritical Hopf 

bifurcation at // = //„. the system operating condition changes to sustained oscillation for 

This type of supercritical Hopf bifurcation appears and plays a fundamental role in 

the oscillating event experienced by Union Electric in 1992[6.33]. Hopf bifurcation is 

classified as subcritical if the dynamic orbit shrinks into a stable equilibrium that disappears 

and only an unstable equilibrium survives. For a supercritical Hopf bifurcation, this scenario 

is reversed. In this case, a stable equilibrium becomes unstable, and a stable periodic orbit is 

created at the bifurcation. 
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3.2.3 Comparison with Time Domain Simulation 

A bifurcation model based analysis assesses system stability by capturing the 

character change of equilibrium, thereby avoiding time domain simulation. But it could not 

present information related to timing issue of how load dynamics affect overall system 

stability. And if equilibrium character change with respect to the variance of bifurcation 

parameter is detected, bifurcation based analysis could not determine the critical time to 

apply corrective control. Time domain simulation is still needed for overall stability 

assessment and timing of control. 

3.3 Manifold Models in Power Systems 

Mathematical models of many, practical and important scientific and technical 

problems involve differentiable manifolds. Differentiable manifolds are implicitly defined as 

the solution sets of systems of nonlinear equations [36]. 

3.3.1 Manifold 

Assume a dynamic system is presented as 

:  =  F { : . À ) .  F : R M X R J  /T (3.38) 

Where F is a sufficiently smooth mapping, re /i"is a state variable, and ze /?'' is a 

parameter vector. A computational study of equilibria leads to the nonlinear equations of 

(3.39) 

F ( : . À )  = 0 (3.39) 

Interest often centers on determining the behavior of the solution under variation of 

Â. The zero set M = {(r.z)e RMXRU :F(x.À) = o} has the structure of a submanifold of 

dimension d of the product RM x RD of state and parameter space. A computational analysis 
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could be conducted on the concerned manifold about the singular points on M or other 

dynamic behavior. In power systems, the dynamical systems are modeled by differential-

algebraic equations (DAE). Such DAE is known to be closely related to ordinary differential 

equations (ODE) on implicitly defined differentiable manifolds [52]. 

In fact, one of the basic computational problems arising in connection with any 

implicitly defined manifold is exactly the construction of certain parameterizations and 

requires the solution of certain systems of nonlinear equations. 

3.3.2 Natural Parameterization 

In many applications certain quantities are naturally identified as parameter. This 

means that we have an intrinsic splitting, which includes a ^dimensional parameter space A 

and a state space A'. 

X © A . dim A = d 

This is a natural parameter splitting of original variable space. It is natural to attempt 

to use the parameter space A as the coordinate space of a local coordinate system. 

For some cases, the natural parameterization may be not suitable to be a local 

parameterization. In these cases singularity is always encountered while solving for the 

solution of nonlinear equation system. 

3.3.3 Local Parameterization [36] 

The (/-dimensional linear subspace 5 = ker £>/•"(£..//) of Rm 'J  depends only on .1/ 

and the particular point on XL This space S is the tangent space of M at .r and is denoted by 

T C M .  
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The local parameterization could be based on tangent space T t  M . This could avoid 

singularity encountered by natural parameterization. We assume that the vectors 

z/i.•••.i/j,i G Rm~dr{ form an orthonormal basis of the given coordinate subspace T of M at 

.r . Then the matrix representation of the mapping U is the (m + d)xd matrix with the 

vector as columns. This matrix is denoted by U. 

Then, in component form, the nonlinear mapping //assumed the form [36] 

H :R"'" •-» /r .  H(x) = 
F(.x) 

,L'r(;r-.r ), 
. VxE £ C Rm" i .  where Fix/ is the column 

vector consisting of the m components of F evaluated at.t. By definition of 0 we have 

H«p{y)) = Jy. Vy€ vJ  (3.40) 

Thus, the evaluation of ,r = ç?(y) for given y 6 vJ  requires the solution of the 

nonlinear system of equations 

f f w -(rW 
'0 

, y j  
(3.41) 

For general cases, the Jacobian matrix 

DH(x) = 
DF(.t)> 

v J (3.42) 

is nonsingular in an open neighborhood of x = xc.. 
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For the solution of the nonlinear system, a chord Newton method works well in 

practice [36]. 

3.3.4 Manifold Model in Power Systems 

Different manifold modeling is proposed depending on how the set of nonlinear 

equations is formulated. They thereby have different meanings and serve different objectives 

in power systems. 

Power system equilibrium manifold is defined in Chapter 4 for power system 

equilibrium tracing. 

Bifurcation related stability margin boundary manifold is a submanifold of power 

system equilibrium manifold and is defined in Chapter 5 for unified margin boundary tracing. 

Optimal margin boundary manifold is a submanifold of stability margin boundary 

manifold and is defined in Chapter 6 for optimal margin control tracing. 

Piecewise integration constraint manifold is defined in Chapter 7 for local 

parameterization based multi-time-scale time domain simulation. 

The advantage of the approach presented in this thesis is that the methodology for all 

these formulations is same. It employs a local parameterization based predictor-corrector 

approach to trace all these manifolds. 
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CHAPTER 4 POWER SYSTEM EQUILIBRIUM TRACING WITH DETECTION OF 

BOTH SADDLE NODE AND HOPF BIFURCATIONS 

4.1 Natural Parameterization of Load Parameter Space for Power System 

Equilibrium Tracing 

The equilibrium of power system DAE model (3.35-3.36) is confined by 

0 = F°(X.Y.Z.U) 

0 = G ,\X.r.Z.U) 
(4.1) 

Which defines the equilibrium manifold of the power system. The conventional 

power flow solution is simply a point on this manifold corresponding to a certain operating 

condition. It could be regarded as an intersection point of the equilibrium manifold and a 

hyper-plane defined by a system condition. The power system DAE (4.1) is naturally 

parameterized by load parameters Z and control variables U. 

Power system equilibrium manifold tracing is. in general, under fixed control 

configuration. Therefore, in this chapter. U is not considered as a parameter set of the power 

system DAEs. Only load parameters parameterize the power system equilibrium manifold. 

Based on the loading scenario, the loading parameter space could be unified by a 

scalar// to characterize the system loading pattern. 

where pM and Oi,0 represent the initial loading conditions at base case where n is 

assumed to be zero. K£pi and KI^ indicate the rate of load change at bus i as n changes. 

Correspondingly, a specified generation scenario is given as follows. 

(4.2) 
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+ (4.3) 

where P g,o is the active generation at bus i  in the base case and KJ, is the generator 

load pick-up factor that could be determined by AGC, EDC or other system operation 

practices. 

After this transformation, the equilibrium manifold of power system DAE becomes 

jo- ,4.4, 

4.2 Equilibrium Manifold of Power System and Transverse Difficulty 

The equilibrium is the solution of a set of nonlinear equations. It could be calculated 

by the Gauss-Sedel method or the Newton-Raphson method (or their derivatives). The 

Newton-Raphson type of method is widely used due to its super-linear convergence rate. But 

when load stress on power system is increased, both methods have difficulty converging, 

however close the initial guess is. This is due to the folding of the equilibrium manifold over 

the load parameter. It is difficult to converge to the intersection point of the equilibrium 

manifold and the original cut hyper-plane defined by the system generation and loading 

condition. Therefore when the power flow solution diverges, it is not clear whether it is 

caused by the nonexistence of system equilibrium or numerical problem coming from the 

conventional power flow algorithm. The voltage collapse point coincident with the fold point 

cannot be determined by conventional power flow solution. If this bifurcation is also 

associated with heavy load condition, the equilibrium manifold transverse difficulty also 

makes the location of oscillatory instability difficult or impossible. 
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4J Initialization of Power System Equilibrium T racing 

To start a power system equilibrium tracing, we need initial conditions that are 

defined by the following variables at all buses 

5.0). ErEj. EfJ. Vr.R, JdJj .V.Q 

The solution from power flow provides 

v.e 

at all buses. The remaining values are obtained as shown in the following paragraphs. 

Assuming z'th generator bus. the first step in computing the initial conditions is 

normally the calculation of the generator currents from stator and network equation as 

Then the relative machine rotor angels can be obtained from (4.6) 

5, = angle of (Fe^ +(/?_ + yX, )/,; ert ) (4.6) 

With these quantities, the remaining dynamic and algebraic states can be found by 

Iu. + y'/¥i = *90'1 (4.7) 

Vj +yp; = rej,e "90"' (4.8) 

followed by E/j from the stator and flux equation: 

£ • , = . ! H . » 1  

With this field voltage. Rr.. P& and Vnt, can be found from the exciter equations as 

R f  =—^E f J  (4.10) 
l f .  
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(4.11) 

(4.12) 

This initial value of £»< and £/< are then obtained from the flux equations: 

(4.13) 

(4.14) 

This completes the computation of all dynamic state initial conditions. 

4.4 Continuation Method with Local Parameterization 

So far two methods, namely, direct and continuation methods, have been applied to 

detect voltage collapse [9.9b. 15.16.1922]. This section extends the application of the 

continuation method to the power system DAE formulation. The system equilibrium 

manifold defined by (4.4) could be traced, according to a scheduled scenario parameterized 

by fj. from base case up to the point where dynamic voltage collapse associated with the 

saddle node bifurcation occurs. 

The continuation method involves the process of prediction and correction. In the 

predictor, the tangent vector is solved from 

F x  F r  Fu dX 0 

Gx Gy Gu dY = 0 

e[ du ± I 

(4.15) 

Once the prediction is made with the tangent vector, the following correction is 

performed to find the equilibrium point. 
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>.v Fr F; Xv" F 

Gx Gy Gu AY G 

4 .AV. 0 

where [JXr.d)1 is the tangent vector. <?* is a column unit vector with all the 

elements equal to zero except for the k,i, one. which corresponds to the current continuation 

parameter. Since F^ and Gu cannot be null vectors at the same time even at the base case 

(//=0), the singularity of the augmented Jacobian matrix can be easily avoided by the 

appropriate selection of the continuation parameter. To speed up the computing, the same 

Jacobian matrix can be used in (4.15) and (4.16). However, if some of the variables hit their 

limits the Jacobian matrix have to be updated to achieve a better convergence. 

From (4.15). we can see that the component of the tangent vector actually indicates 

some kind of sensitivity of the system variables to the current continuation parameter. Since 

u is introduced to parameterize the system generation and load level, it increases 

monotonicallv to the maximum value. Hence du is positive before fi reaches its maximum, 

and negative afterwards. Null du indicates that the system total Jacobian matrix is singular. 

This is clearly shown in section 4.5. 

4.5 Linearization of Power System DAE 

When the parameter in (4.1) is varied, the corresponding state vector X and the 

eigenvalues of the system matrix evaluated on this path change accordingly. 

Linearization of (4.1) at the equilibrium point with specified U and Z as natural 

parameters leads to: 



www.manaraa.com

47 

'AX' 

0 

r>- T, 

Px G,I 

AX 

AY 

'AX' 
^total A Y 

(4.17) 

Matrices F\, Fj. G.v. and G y contain first derivatives of F and G with respect to A' and 

K. evaluated at the equilibrium point. 

Note that matrix G> is an algebraic Jacobian matrix that contains the power flow 

Jacobian matrix. 

In the above equation, if det(G>) does not equal zero. 

AY =  -Gy [ G x AX 

Substituting in (4.17) results in 

AX =  A s y s AX 

(4.18) 

••'m = FV -  FyGy 1  G x  

(4.19) 

(4.20) 

The essential small-disturbance dynamic characteristics of a structure-preserving 

model are expressed in terms of eigen-properties of the reduced system matrix Ans. This 

matrix is called dynamic system state matrix. 

Eigenvalue analysis of will give dynamic stability information of the current 

equilibrium point under small disturbances. At voltage collapse, the system loses the ability 

to supply enough power to a heavily loaded network. At that point the so called saddle node 

bifurcation occurs, which is described by the movement of one eigenvalue of.-f^ on the real 

axis, crossing the origin from the left half of the complex plane. Eigenvalue computation can 

detect this movement. Participation factor studies will show how bus voltages participate in 
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this collapse mode, and sensitivity analysis will show the parameter influence on this critical 

situation. However, the above procedure is computational intensive since eigenvalue 

computation is involved. Furthermore, the formulation of also destroys the sparsity of 

J total-

At saddle node bifurcation that leads to voltage collapse, one of the eigenvalue of An s  

becomes zero. Equivalents, the determinant of.-!,» equals zero. From matrix theory, we 

know that. 

det/w =det 
'Fx Fr] 

Px Gr 
= det(F x  -  F rGy'G x)det(Gy ) 

= det(.-jni)det(Gy ) 

det J,M u l  =det 
F x  F f  

G.V Gy 

= det(.-l,t,)det(G> ) 

= det(F x  -  F rGy lG x  )det(Gr ) 
(4.2i : 

If G y  is nonsingular. the determinant of becomes zero if and only if the 

determinant of J,omi is zero. This is the Schur formula. Jwtat is very sparse and thus allows 

efficient handling using sparse techniques. Therefore, detection of the singularity of is 

equivalent to the detection of the singularity of Jtotai-

4.6 Detection of Saddle Node and Hopf Bifurcation with System Total Jacobian 

Matrix 

Proposition 4.1: When Gy1 exists and ux * 0. there is the following equivalent 

condition 

A
n,ux 
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if and only if 
F x  — /J  F f  Ti '  v  =0. 

G x G y [I My 

where  u r  = -GÇ'G x u x  

We define the extended right eigenvecter u = [m [. Uyf. 

Proof[11]: 

Assume Aw i t x  =zzvv ie. (F x  -  F yGy iG x)ux = Àu x  

From L.H.S of (4.23) 

[ F x - À I  F r ]  

G y Gy j 

U v  ! _  

ur j 
(F\  -ÀJ)ux  +  FyUy 

G y  U x  +GYUY 

(Fx  —Àl)ux  — FYGYGXUX 

GxUx -Gy GY'GxUX 

(Fx  — Fy Gy ' Gx  )ux  — Aux i 

o ! 
= 0 

(Substitution of ur = -G,"lGruv in the above equation verifies (4.23)). Or 

~FX  -ÀI F y '  ux 
Assume = 0 

1 &
 

-P
 

."y.  

That is 
(F x  -ÀI)ux + FyUy = 0 

GXUX  + G y 11 >• 

substitute»,. = -G; i G x u x  into (4.28), 

After rearrangement based on the definition of Ans 

AN,UX =^V 

is obtained. 

This concludes the proof for Proposition 4.1. 
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(4.23) will be utilized to detect either Saddle node or Hopf bifurcation 

4.6.1 Detection of Saddle Node Bifurcation 

For the detection of Saddle node bifurcations. 

A ,» u x  = 0 x u v  = 0  (4.30) 

From proposition 4.1, the condition 

'F x  Fy '  U y 

P x  G ) .  J ' y .  

= 0 
(4.31) 

will be utilized to detect Saddle node bifurcation. That is. to detect the singularity of 

the total Jacobian matrix 

We define 4 = 
F v  F, 

px  G r .  

The singularity of A>»iu/ can be detected when dp=0. calculated from the predictor 

(4.15). When dfe=0 . (4.15) becomes 

F r  F. dX 0 

Gy Gu  dY - 0 

< 0 ±1 
(4.32) 

FX  Fy 'dX~ 

Which implies 
Px G y _  dY 

= 0 
(4.33) 

And 

'dX "0 " 

dY = 0 

0 ±1 

(4.34) 

dX 

dY 
is not a null vector. 



www.manaraa.com

51 

Thus the saddle node bifurcation point can be readily identified by equivalently 

detecting null dp during the direct equilibrium tracing, without formation of A„i 

computing its eigenvalues. 

4.6.2 Detection of Hopf Bifurcation without Eigenvalue Calculation 

After a simple transformation. Hopf bifurcation corresponds to a fold point of the 

transformed manifold. 

Proposition 4.2: Let the maximum eigenvalue of 

is Â,, then case I: z, >0 is the necessary condition for ("^iuâiV T Auhu1 ) 
Fx  - Ff Fy ~G[ 

P X T  Ff Gy > Gy _ 

Hopf bifurcation associated with the power system DAE model ( A n J. Case 2: When A,uul is 

approximate to a normal matrix (this is the most likely case), =0 becomes the necessary-

condition. 

Proof: 

Case I : Provides the proof for the necessary condition of Hopf bifurcation. 

At Hopf bifurcation, there exists an eigenvalue of À = jco such that, from 

proposition 4.1. 

(••L* -yaj7 
Q |)« = 

Ex -jco Fy 

Gx  Gy 
h = 0 (4.35) 

and assume u is an associated eigenvector with 2-norm unity. Then 

f[ 1 i 
«--L* -y'<yj o  \)u.u) = u"(Aaiai -y"<a| 0j)" = ° (4.36) 

and. 
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Therefore ({A l l l l a i  + A]o l a l  )u,u) = 0. It is obtained from the summation of above two 

equations. 

Case 2: Provides the proof for necessary condition for the Hopf bifurcation when 

•icai *s a normal matrix. 

From Hausdorff s convex hull theorem [48]. 

with 0<# <1 and = I. where M is the dimension of dynamic variables and 

N is the dimension of the algebraic variables. 

For normal operation of the power system. À, < 0 where/i, is the eigenvalue of A l n r a l .  

Therefore À =0 indicates the Hopf bifurcation. 

Then the identification of Hopf bifurcation for Am is nothing but the identification of 

the singularity of the matrix (Amal + A^ ). A set of cut functions for Hopf related fold 

bifurcation could be implicitly defined as ym(X.Y.fiMrjand yHZ(X.Y.fi.a) in the following 

equation. 

Since z, = max((.4,„w + )x.x) for .r *0..r€ C. 

Therefore z. +A,^)u.u) = 0 

(4.38) 

(4.39) 

((•i** + •<«, )«•«)= =° (4.40) 
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Fx -r F t  F r  t Gx e i e,  

G v t Fj Gr -r Gr 

e[ 0 0 

ef  0  0  

where or equivalently. 

Fr t F,r Fr t Cf e t  e 

G x  -r Ft' Cr + Gj 
e[ 0 0 

/ 0 0 

U x  0" 

U r  0 

Y m  1 

0 

= 0 
(4.41) 

• r  
vv "o" 

0 
+ 

/», I 

/ H Z .  0 

= 0 
(4.42) 

Ux and «) ( v.v and vY  ) are the vectors associated with the index yH X  and Ytr. • They 

correspond, respectively, to X and Y variables. 

The test matrix (A l i i u i  + A[ i l a i  ) is 2 dimensional singular if and only if 

K.//.or) = 0and yH Z{X.Y.fi .a) = Q-

Since yH l iX.Y.fi .a) = oand y„.jX.K./i.ar) = 0. therefore 

--L. 1 = 0-
u, I 

r « , l  u, 

I =
 

-

+
 

II o
 

I =
 

-

+
 

II o
 

(4.43) 

Since e[ | +1 = 0. 1 || * 0 (4.44) 

Therefore (AloUi + ) is singular. 

Note that as a special case. Saddle node bifurcation could also cause (A l l l l a /  + AM u t  )  

singular. Therefore this test needs to work with a Saddle node bifurcation test to identify 

Hopf bifurcation. 
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At the Hopf bifurcation, the cut set condition is satisfied, that is yH^x.Y.n.a) = 0 .  and 

yH2(X.Y,M.a) = 0 but dfi* 0. 

At each continuation step. ySNB and Y H\ • YHI are checked. 

If ZXVfl changes sign, the Saddle node bifurcation point has just been passed. 

Otherwise, if Yki changes sign, the Hopf bifurcation has just been passed. 

Therefore, without eigenvalue calculation. Hopf bifurcation could be detected along 

with Saddle node bifurcation using properly defined cut functions. Fig. 4-1 presents the 

flowchart of the process of the detection of SNB and Hopf bifurcations along the PV curve 

tracing. 
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Yes 
SNB passed? 

Detect 
Hopf? 

Detect 
Hopf? 

No 

Yes 

Yes Hopf passed? 

No Any limit 
violation? 

Yes 

START 

END 

Corrector 

Predictor 

Specify a loading scenario 

Detection of SNB 
(Check djj. ) 

Detection of Hopf 

( C h e c k  Y H \  a n d  Y H Z )  

Figure 4-1: Flowchart for detection of Saddle node and Hopf bifurcations 
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4.7 Numerical Example 

Detection of Saddle node and Hopf bifurcations in power system equilibrium tracing 

is demonstrated through the numerical tests performed on the New-England-39-bus system. 

The following conditions are assumed throughout the simulation. 

• Constant power load model: 

• The maximum real power limit, the field current and the armature current limits are 

considered for each generator: 

• No generator is allowed to have terminal voltage higher than 1.1 p.u. when its 

secondary voltage control is utilized to increase system stability margin: 

• The loading scenario is defined as that all the loads are increased with constant power 

factor, and all the generators participate in the load pick-up at the same rate. 

The starting condition for power system equilibrium tracing is the base case power 

flow of the New England system. The one line diagram and data files of the New England 

system are presented in the appendix. 

4.7.1 Equilibrium Tracing with Detection of SNB and Hopf 

The PV curve is traced under the base control configuration. The Hopf bifurcation 

index is checked at each continuation step. The eigenvalue calculation is avoided by 

detecting the simultaneous sign change of ym and Y ta- Fig. 4-1 shows the PV curve under 

base case control condition. The system load margin constrained by Hopf is 809 MW and it 

is 1370 MW away from voltage collapse. 
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Figure 4-2: Hopf detection in PV curve tracing under base control 

4.7.2 Computational Requirements Compared with Eigenvalue Calculation 

The detection methods proposed in this chapter are computationally efficient since 

the eigenvalue calculations are avoided. From the formulation (4.32) for Saddle node 

bifurcation and formulation (4.41) or (4.42) for Hopf bifurcation, we can see that the 

augmented linear equations are solved only once at each continuation step. This method 

saves a large amount of computation compared to eigenvalue calculation since the eigenvalue 

calculation employs intensive iterative caculation. This is the case even in some simplified 

algorithm solving for only the largest real part eigenvalue. 

4.8 Summary 

The load margin of a power system could be determined by equilibrium tracing. 

Because it is based on a more exact modeling of a power system, the solution is more reliable 

than solution based on continuation power flow. Meanwhile, the generator related dynamic 

could be detected, along with Saddle node bifurcation, with a system total Jacobian matrix. A 
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new method is proposed for the quickest detection of Hopf bifurcation. This formulation is a 

fundamental step towards unified margin boundary tracing presented in chapter 5. and 

optimal margin boundary tracing explained in chapter 6. 
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CHAPTER 5 UNIFIED MARGIN BOUNDARY TRACING 

5.1 Introduction 

In chapter 4. we identified both Saddle node and Hopf bifurcation for a fixed set of 

control parameters. When control parameters change, the stability margin related to Saddle 

node or Hopf bifurcation changes as well. The voltage stability margin boundary is confined 

by Saddle node bifurcations, whereas oscillatory stability margin boundary is confined by 

Hopf bifurcations associated with different sets of control parameters. From the perspective 

of bifurcation, this chapter provides a unified framework to identify and trace voltage as well 

as oscillatory stability margin boundaries. The system load margin corresponding to any 

control configuration is determined without retracing the entire PV curve. The eigenvalue 

calculation associated with the Hopf bifurcation is avoided. The proposed method considers 

all the system limits. 

5.2 Natural Parameterization of Control Parameter Space for Margin 

Boundary Tracing 

In chapter four, the equilibrium manifold of power system (4.1) is actually 

parameterized by both control parameters and load parameters. But only load parameters are 

considered for power system equilibrium tracing. However the control parameters should be 

taken into account for margin boundary tracing. Then there is a natural splitting in parameter 

space. This parameter space is the combination of control parameters U and the load 

parameters Z: 

Parameter space = control parameter space © load parameter space 
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Control parameter space can contain any type of control. The following controls are 

studied in this chapter: 

• Load shedding 

• Shunt capacitance 

• Shunt reactive power compensation 

• Generator secondary voltage control 

Control parameter space is parameterized by a scalar a to characterize this space. 

Where L'„ indicates the initial configuration of control /. 

Different combinations of control action can be achieved by assigning different ratio 

values to KC,. 

This parameterization leads to two parameter variations: fi characterizing svstem 

loading condition with respect to a specified loading scenario and a characterizing control 

parameter with respect to a specified control scenario. The equations of power system 

equilibrium manifold are modified to reflect these changes as shown in (5.2). 

Note that the loading scenario is kept invariant during the change of control scenario 

in the margin boundary tracing of chapter 5 and optimization of control scenario in the 

optimal margin boundary tracing of chapter 6. 

U, =i\a +aKC, (5.1) 

0 = F(X.Y.f i .a)  

Q = G(X.Y.f i .a)  
(5.2) 
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5.3 Formulation of Unified Margin Boundary Tracing 

5.3.1 Margin Boundary Manifold of Power System 

In the case of a multi-dimensional, implicitly defined manifold M, specific local 

parameterization needs to be constructed to trace a certain submanifold with a special 

property on M. Saddle node or Hopf bifurcation points form a margin boundary submanifold 

corresponding to the change of control parameters along a specified control scenario. 

Therefore bifurcation related stability margin boundary manifold could be traced by 

augmenting the power system equilibrium with a characterization equation. This 

characterization equation defines the margin boundary. 

5.3.2 Bifurcation Characterization 

5.3.2.1 Characterization of Saddle node bifurcation 

The Saddle node bifurcation of a dynamic system corresponds to codimension 1 fold 

bifurcation. A cut function for Saddle node related fold bifurcation is implicitly defined as 

Zvv„(.Tiin the following equation. 

>1 F} "A "o" 

Gx Gy Uy + 0 

X 0 _Ys\H I 

= 0 (5.3) 

where we denote m" = 
"r 

\ F> 
or equivalently. j gv g, 

, e\ 0 J YSSB 

1° 
+ |0 

II 

= 0 (5.4) 
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where we denote v -
> 

With the formulation of (5.3), the cut set condition yss.B (AT. Y.fi, a) = 0 implies it is 

at the fold point. 

If Y xsb Y . f i . a )  =  0. then 

>v Fy'  k] V,1 >v Fy'  k] = 0 and e\ 
V,1 

Gv G > .  3°. kJ = I which implies 
»? 

* 0  

Hence, proving that it is at the fold point. 

< 1 ;  is the rieht eigenvector associated with zero eigenvalue. Similarly 
U y  

v;i. 
L y y J  

is the 

left eigenvector associated with zero eigenvalue. 

In principle, the indices k and j in (5.3-5.4) may be kept fixed throughout the 

computation, but it is usually advantageous to update them occasionally by selecting new 

indices for the next step according to 

(5.5) 

(5.6) 

e k  ) r  v°! = max|(e' )T v°|, i = I.- • ••.m\ 

|(e; )rM°| = max|(e')r«l)|,/ = l.---.m} 



www.manaraa.com

63 

5.3.2.2 Characterization of Hopf bifurcation 

At the Hopf bifurcation, the cut set condition is satisfied, that is ym(X,Y,n,a) = Q, and 

y„z(X.Y,p.a) = 0. Any of them alone could be used to identify Hopf bifurcation in Hopf 

bifurcation related margin boundary tracing. 

For a Hopf bifurcation, any of y m (X .Y , f i ,a )  =  0 and y H Z (X . } \M.a)  =  0  could be 

differentiated to trace Hopf bifurcation related margin boundary (Excluding the possibility of 

Saddle node bifurcation). 

5J.2J Augmentation for bifurcation characterization 

A characterization of bifurcation can be formulated in the cut set form as follows on 

the solution manifold [17]. 

These bifurcation based margin boundary tracing can be obtained by the solution 

manifold as defined in (5.7)[40]. 

A cut function for Saddle node bifurcation could be substituted to trace voltage 

stability margin boundary. 

F(X.Y.p .a )  

B{X.Y . jx .a )  =  G(X.Y.fiM) =0 

c(X.Y,fi,a) J 
(5.7) 

C(X .Y .MM)  =  y S S B {X .Y .n .a )  (5.8) 

Dc(X.Y .u .a)  =  DYshb (5.9) 

(Here D stands for differentiation) 
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A cut function for Hopf bifurcation is substituted to trace oscillatory stability margin 

boundary. 

c(A\ Y,ju.a) = yHl(X. Y.^.a) 

D c ( X . Y . f X M )  =  D y H l  

5.3.3 Augmentation for Local Parameterization 

The total augmented equations for margin boundary tracing are 

(5.10) 

(5.11) 

H(X.Y.n.a) = 
B(X.Y.u .a)  

>r YT n e|r, -r, 

F(X.Y.^a) 

G(X. Y.pua) 

c(X.Y,n,a) 

[kr Yr M a\>k -r) 

=0 (5.12) 

DH(X.Y.ft .a) = 

I DF 

|  DG 

! Dc 

I" Fx F r  Fu  F„ 

i G\ Gr Gu Ga (5.13) 
Cv Ct 

di 

C u Ca 

where r ]  = [x 'prr Y f
p r r  //„„ aprtc Jet and it is obtained from the tangent vector 

calculated in boundary predictor. 

5-3.3.1 Boundary predictor 

With a as step size. 

DH(X.Y.MM) 

rdX 1 

f l .  du ! 

Lda\ L^-

and 

-V 'x' ~dX~ 

Yprr Y dY = + 0 
du Mpn M du 

a~l 
a [da 

(5.14) 
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The Jacobian matrix of the augmented equation system is nonsingular under the 

appropriate choice of a continuation parameter. Similar criteria can be applied as is presented 

in [4], 

5.3.3.2 Boundary corrector 

The Newton method is employed to do the boundary correction as 

'.V' r 
r 

v-

L 

r.vl 
I 

(5.15) 

5.3.4 Differentiation of Cut Functions 

Through the differentiation of the above augmented equations, the derivative of the 

augmenting function ySSB could be obtained from 

DYSXHW  = V  D  
>v Ff 

Px Gr 
(« .W) (5.16) 

| dX j 

where w = I 
! 4" | 

W 

Proof: 

To obtain the derivative of yS7 

kr »r rsJ 
>.v Ff e, U ]  

II ?
 

V)0r 

" o "  

Gx Gr II ?
 

V)0r 0 = -^«(5.17) 

e,r 0 Ysva _ -i 
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>v Fy 

' 1 G, G, 
[v°/ Var 

Uy J 

"v 

L"r j 
Y SNB ~ YSSB (5-18) 

Since [v0/ v°r J et = - 1  i s  d e r i v e d  f r o m  ( 5 . 4 )  a n d  eT, 
U°\ 

Ut 
= -1 is derived from 

(5.3), 

YS.\H 

"°v 
(5.19) 

DYssb =[»vr "r'T 
LG, 0,1 

F 'Ui + V , V, 
Fx  F r  

Gx  G, 
of"' :  

F, 
4r <tie , ! « r  j  L  t  ° f  

V: ] 

Uv 

(5.20) 

or m -k  
v"He' F, Fr 

Gr 

"a- (5.21) 

To avoid the calculation of the Hession matrix, in implementation, finite 

differentiation could be applied instead, as follows. 

DYSSS ~  ? V (XJ .M.a)  T • < .y* (5.22) 

Where S *• 0 is a sufficiently small scalar. The test matrix for SNB is defined as 

r=: . \DF\  
I DG i 
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Actually. Jacobian matrices are evaluated twice, at points (.V + Su\ ,Y+ 

and  {X .Y .^ i ,a )  t o  approx ima te  Dy S N a .  

Through the differentiation of the above augmented equations, the derivative of the 

augmenting function y could be obtained from 

Dy H x w =  v 0 T D 
Gv + Fy Gy + Gy 

(5.23) 

The proof is similar to the proof of proposition 5.1 and thus is omitted here. 

Therefore, without eigenvalue calculation. Hopf bifurcation could be detected and 

directed, just as when we trace for Saddle node bifurcation by bifurcation unfolding with cut 

function. The volume of calculation is decreased dramatically. 

In implementation, finite differentiation is also applied as follows. 

~ X V| V >'.Y-iiif .M-at X i' ft.a\ (5.24) 

Where the test matrix for Hopf bifurcation is defined as 

"Si-
DF 

DG 

-ir 

5.3.5 Unified Margin Boundary Tracing 

The unified margin boundary tracing program is designed to have several options as 

follows. 

1) Saddle node bifurcation related voltage stability margin boundary tracing. 

2) Hopf bifurcation related oscillatory stability margin boundary tracing. 
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3) The most conservative margin boundary tracing. 

The first two options check either SNB or Hopf bifurcation condition correspondingly 

along the equilibrium tracing and further trace the related margin boundary. The most 

conservative margin boundary tracing checks both bifurcation conditions and always switchs 

to and continues the tracing on the most conservative margin boundary. 

The following steps are necessary in unified margin boundary tracing. 

1 ) Specify a loading scenario. 

2) Direct Equilibrium Tracing starts at the current operating point for the first 

boundary point under the current fixed control configuration and specified loading 

scenario. 

3) Specify the control scenario that describes the change of control configuration or 

contingencies. 

4) Boundary prediction with (5.14) 

5) Boundary correction with (5.15) 

6) Go to 4) unless some control variables hit limits, otherwise stop. 

The procedure is also shown in flowchart Fig.5-I. 



www.manaraa.com

69 

Option? 

No 
Control 

variables hit 
limits? 

Yes 

START 

END 

Output previous margin 

Store intermediate margin 

Substitute cut function 
with (5.8) 

Specify the control 
scenario 

Boundary prediction 
with (5.14) 

Substitute cut function 
with (5.10) 

Boundary correction 
with (5.15) 

Identify SNB or Hopf with 
direct equilibrium tracing 

Select option: I. SNB margin boundary tracing 

2. Hopf margin boundary tracing 

Figure 5-1 : Flowchart of margin boundary tracing 
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5.4 Saddle Node Bifurcation Related Margin Boundary Tracing 

Saddle node bifurcation related unified margin boundary tracing is demonstrated 

through the numerical tests performed on the New-England-39-bus system. 

The same conditions are assumed as the numerical example of Chapter 4 except that 

the limit of V, of each generator is lower. 

Before margin boundary is traced with respect to any control, direct equilibrium 

tracing is conducted under a specified load scenario from the base case operating point until 

Saddle node or Hopf bifurcation is located. The identification of Saddle node bifurcation and 

Hopf bifurcations along direct equilibrium tracing is presented in Chapter 4. In the numerical 

examples presented in this chapter, the loading scenario is defined as that all the loads are 

increased with constant power factor, and all the generators participate in the load pick-up at 

the same rate. 

The starting condition for unified margin boundary tracing is first encountered Saddle 

node bifurcation point in power system equilibrium tracing, starting from the base case. Then 

the margin boundaries can be traced with respect to any specified control scenario. 

5.4.1 Emergency Load Shedding 

Fig.5-2 demonstrates the system total loading margin change with load shedding at 

bus 39. It is highly nonlinear and the system load margin reaches its maximum 1752.84 MW 

when 1056 MW load is shed. Further load shedding after that amount would decrease the 

loading margin. 
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Figure 5-2: System load margin vs load shedding at bus 39 

5.4.2 Reactive Power Support 

Fig.5-3 shows the system loading margin change as shunt capacitance increases at 

bus 8. The sudden drop in margin at 3.0 p.u. shunt capacitance is caused when generator 30 

hits its /., and Vr limits. 
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Figure5-3: System load margin vs shunt capacitance at bus 8 
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5.4.3 Secondary Voltage Control 

Fig.5-4 shows the system margin change with respect to the increased reference 

voltage of the AVR of each generator. The sequential sharp "jumps" are due to some of the 

components hitting their limits. 

1700 

1 6 5 0  * *  -  - -  - -  - -  - -  - -  - -  - -  - -  - -  - -  - -  - -  - -  - -  -  v  -  -  -  -  —  < -  —  

1600 

Î 
• 1550 *- - - - - _ 

t- . 

{- : 
tfl 
S 1400 , 

I 
- 1350-

1300 

1250' 
0 0 02 0.04 a 06 0 08 0.1 0.12 0.14 

Vref increasement of genentaraip. a i 

Figure 5-4: System load margin vs Vref adjustment at all generators 

5.4.4 Control Combination 

The control scenario could be any combination of control parameters. So a unified 

margin boundary tracing method can trace an actual margin boundary with respect to control 

parameter changes in any direction in the multi-control parameter space. 

Fig. 5-5 shows how the load margin changes with respect to a control scenario: V„, 

of generator 39 increases by 0.001 p.u in proportion to shunt capacitance at bus 8 increased 

by 0.1 p.u. and reactive power injection at bus 6 increased by 0.1 pu. The control scenario 

simulates the total effect of secondary voltage regulation, as well as linear and nonlinear 

reactive power compensations. 
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Figure 5-5: System load margin vs control combination steps: 
V reG9(0.001 pu).C8(0.1 pu),Q6(0. Ipu) 

5.4.5 Multiple Contingencies 

Voltage stability margin change due to single or multiple contingencies could also be 

traced by parameterizing the control parameter change involved in the contingency. The 

margin change caused by the double line outages of 8-9 and 7-8 is calculated by 

parameterization of branch outage. A multiplier of branch resistance and reactance is defined. 

If it is zero, the line is totally in. If it is I, the line is totally out. A value between 0 and I 

indicates an intermediate status in the continuation process [Fig.5-6]. 
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Figure 5-6: System load margin vs multiple contingencies: line 8-9 
and line 7-8 outage 

5.5 Saddle Node and Hopf Bifurcation Related Stability Boundary Tracing 

In this section both Saddle Node and Hopf bifurcation margin boundaries are 

calculated for the New-England-39-bus system. 

The same conditions are assumed as the numerical example of identification of both 

Saddle node and Hopf bifurcations in Chapter 4. The starting condition for the unified 

margin boundary tracing is Saddle node or Hopf bifurcation point in power system 

equilibrium tracing, starting from the base case. 

5.5.1 Boundary Tracing with Respect to Generation Control Parameters 

The Hopf bifurcation related margin boundaries could be traced with respect to any 

specified control scenario. 
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5.5.1.1 Load margin versus adjustment of Ka of AYR system 

In Fig.5-7. voltage stability (SNB related) margin boundary versus adjustment of 

"Ka" gain of the AYR of each generator around its base case operating value is depicted as 

the solid curve. Oscillatory stability (Hopf bifurcation related) margin boundary versus 

adjustment of "Ka" around its base case operating value is depicted as the dashed curve. A 

positive value of Ka enhancement denotes an increase of Ka and a negative value denotes a 

decrease in Ka. Increase of Ka may lead to system oscillatory instability, even though the 

proximity to potential voltage collapse is enlarged. When Ka is decreased by more than 11. 

the system no longer loses stability via Hopf. Only Saddle node bifurcation related voltage 

collapse limits the system load margin. This confirms the theoretical condition for the AVR 

parameter effect on the evolution of Hopf bifurcation [32]. 
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E 
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Ka ennancement at ail generators 

Figure 5-7:lînifïed margin boundary tracing versus Ka adjustment 
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5.5.1.2 Load margin versus adjustment of Vref of the AVR system 

In Fig. 5-8. voltage stability (SNB related) margin boundary versus unified 

adjustment of Vrefs of all the generators around their base case operating value is depicted as 

the solid curve. Oscillatory stability (Hopf bifurcation related) margin boundary versus 

adjustment of Vref around its base case operating value is depicted as the dashed curve. An 

increase of Vref of AVR may lead to oscillatory instability even though the proximity to 

potential voltage collapse is enlarged. The non-smooth profile of margin boundary is due to 

various components hitting their limits. 
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Figure 5-8: Unified margin boundary tracing versus Vref adjustment 

5.5.2 Boundary Tracing with Respect to Network Parameter Change 

5.5.2.1 Load shedding 

Fig.5-9 shows that load shedding at bus 39 increases the load margin of both the 

Saddle node bifurcation related voltage collapse and Hopf bifurcation related oscillations. 
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Note that other control parameters such as Ka and Vref are kept constant at their initial 

operating value. This demonstrates that load variation could also affect system oscillatory 

margin. 

2000 -

- 1800-

2 

? 
| 1600-

2 

| 1400-

2 1200-

1 

E 1000-

800 -
3 

Figure 5-9: Unified margin boundary tracing versus load shedding 

5.5.2.2 Contingency: single line outage 

Fig.5-10 shows the margins that are constrained by the Saddle node and Hopf 

bifurcations. The margins declined due to the single line 6-31 outage. This line connects the 

load 6 to the generator at bus 31. This contingency represents a similar event described in 

[33]. 

400 600 800 
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Figure 5-10: Unified margin boundary tracing versus line outage 

5.6 Advantages of Unified Margin Boundary Tracing 

• Unified Margin Boundary Tracing is accurate and reliable. 

• It is easy to take account of limit effects and other nonlinearities. 

• Margin boundary tracing dramatically saves CPU time compare to obtaining each 

new boundary point by exhaustively recomputing the whole PV curve. 

5.7 Summary 

In this chapter, we presented a unified framework to trace the SNB and Hopf 

bifurcation related margin boundary in multi-control parameter space under specified loading 

and control scenarios. It could be applied to monitor the load margin variation constrained by 

both voltage collapse and system oscillations under a control change or a contingency. It 

could also be used for an offline planning study. 
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CHAPTER 6 OPTIMAL MARGIN BOUNDARY TRACING WITH CONTINUATION 

OPTIMAL POWER FLOW 

6.1 Introduction 

This chapter presents a general methodology to solve for the cost sense optimal 

control configurations corresponding to specified voltage stability margin levels. Based on 

the formulation of continuation optimal power flow, the optimal margin boundary is traced 

on the implicitly defined margin boundary surface in a multi-control parameter space. The 

proposed method considers all the system limits. 

Load margin is often taken as a reasonable measure of proximity to bifurcation 

related instability. Independent System Operator (ISO) needs to monitor the system load 

margin in real time and close the power transaction deals based on the available system 

stability margin in order to meet the quickly varying energy demand. How to efficiently 

extend the system margin by the readjustment of the system control configuration becomes 

an important part of the power system operation. 

In this chapter, optimal margin control is achieved with optimal margin boundary 

tracing (OMBT) based on continuation optimal power flow (COPF). It could automatically 

generate a whole set of cost based optimal control configurations with each optimal control 

configuration corresponding to a specific margin level that can be realized. Fig.2-2 is a 

conceptual diagram of the optimal margin boundary tracing re-demonstrated here, u, and u; 

are control parameters, mo.-.-mj indicate the voltage stability margins. 
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Figure 2-2: Optimal margin boundary tracing 

6.2 Problem Formulation 

The cost sense optimal control of specified load levels can be formulated as the 

solution of the following optimization problem, naturally parameterized by the load level 

parameter//. 

For a sequence of specified load levels fi. 

min f ( U )  (6.1 ) 

Subject to 

\F(X.Y . f i .U)  =  Q 

[G(X.Y . f i .U)  =  0  
(6.2) 

h(X.Y . f i .U)<  0 (6.3) 

Here (6.2) comes from an equilibrium formulation of the power system DAE model. 

/(£/) is the cost function representing the total control cost to be minimized. U represents the 

selected control variables from the most effective controls for real power generation 

rescheduling, shunt capacitance, reactive power compensation and load shedding. The 
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control range for other variables is simply determined by their available control capacity. 

h(X.Y,fx.U) represents all the constraints that affect the system stability margin. 

The above formulation is well established in the literature as an optimal power flow 

[28-31], The Galiana group published a series of papers [27-31] on the optimal power flow 

based on the homotopy type continuation method. It could trace its optimal solution along a 

certain load scenario with optimization formulated with power flow equations. Load level is 

parameterized to achieve the optimal solutions in succession. However, the algorithm may 

diverge when the sequential specified load level is close to the largest feasible load margin. 

Our aim is to specifically find an optimal control for specified load margin, that is. to 

seek the control configuration with the minimal control cost for given margin requirements. 

To achieve this objective, the following assumptions are made: 

I ) k 0. which indicates an increase in stability margin always results in 
uC f j vC j 

corresponding increase in cost. (This is most likely case in practice.) 

2) (i)/((. ')>0 

(ii) f(L') = 0 if and only if U = Lr„ . where UQ is defined as the base case control 

configuration. 

Proposition 6.1: With the above assumptions, the optimal solution of the above 

formulation (6.1-6.3) is always on the Saddle node bifurcation related margin boundary 

manifold. 
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Proof: 

Assume there is an optimal solution [vV,r //, U[ f that is not on the margin 

boundary manifold. It has to be within the solvable region. Hence when L', is kept invariant. 

another feasible solution U[ f could be achieved with nmrgX >//,. 

Obviously, control cost is kept constant that is. fmrKl  = /, .  

A change of AU, could be made such that 

df i  
- ^ 7 - =  M „ r , i  - = M \ ~ M m r x l  <  0 .  t h a t  i s .  u m r y 2  =  / / , .  ( 6 . 4 )  

From assumption I ). that is. 

W/^50- ,6-51 

Therefore fmnel = fmrvZ -f =^-AC', <0. (6.6) 

Then there is a feasible solution [.V^: Y^, //, Ur
mntl f such that control cost 

fmntz <f\ - This contradicts the fact that[,\T,' Y {
r  fix  U[J is the optimal solution of 

formulation (6.1-6.3). This proves Proposition 6.1. 

Therefore the above optimal margin control formulation could be applied to obtain 

optimal margin boundary tracing, which is a specific submanifold on margin boundary with 

minimum control cost corresponding to a given load margin. 
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6J Formulation of Optimal Margin Boundary Tracing 

6.3.1 Optimal Margin Boundary Manifold of Power System 

Margin boundary forms a multi-dimensional, implicitly defined manifold in multi-

control parameter space. Specific local parameterization needs to be constructed to trace a 

certain sub-manifold with special property. The optimal control configuration for a given 

load margin is of special interest on the margin boundary manifold. That sub-manifold is 

called optimal margin boundary manifold. An optimal margin boundary manifold could be 

traced by augmenting the power system equilibrium equations introduced in chapter 5 with 

the optimality characterization equation. 

6.3.2 Characterization of Optimal Margin Boundary 

The Lagrangian of the optimal parameterized margin boundary problem is 

UXA\jLl^=f(U)+&WXS.fLU)+%(XX.Y.M.U)+srKX.Y.ii.U) (6.7) 

Where [z£. Àr
(;J is the multiplier vector for the equality constraints, s  is the 

multiplier vector for the operation limit constraints of \X .Y .p i .U\ .  

The first order K-T optimality conditions are. 

V "0 " 'Fx  G[ >4 X" 

Lr 
= 0 + Fy Gr

f 4 = 0 (6.8) 

A. Jr .  F, r r  G[- hAU 
s  

hA (X.  Y. /u .U)  =0 ( h A  corresponds to active constraint set) 

'F(X.Y .M.L-) '  

G(X.Y .M.U)  
= 0 

(6.9) 

(6.10) 
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(6.8-6.10) characterize the optimal control configuration on the margin boundary 

manifold. 

6.3.3 Optimal Margin Boundary Tracing with Continuation Optimal Power Flow 

6.3.3.1 Initialization of the optimal margin boundary tracing 

Before tracing for the optimal margin control submanifold on the power system 

equilibrium manifold, the initial margin is achieved by direct equilibrium tracing under L'„. 

U0 is optimal for this margin and could be used as the initial point of optimal margin control 

submanifold. The following methodology of continuation optimal power flow is proposed to 

further trace for the optimal control to extend the margin. 

6JJ.2 Optimality predictor 

At the boundary predictor stage, the optimal tangent vector is sought with the 

optimization problem formulated in the tangent space which locally approximates the margin 

boundary manifold. 

With the augmented Jacobian matrix of the first order optimality conditions (6.8-

6.10). the optimality predictor is 

Fx Fy Fu Fr  0 0 0 " '  d X ~  
opt 

"0 

Gx Gr  Gu Gr  0 0 0 dY 0 

h.iX K k Au ^AU 0 0 0 du 0 

ACT An Lxu Avr: FTx GT
X dU = 0 

Lyx Lyy L)u Ar Fy' Gy KJ  ctiF 0 

L'.x L,y k; Lfi• FÏ: Gr ( < 0 

ds ±1 

The optimality tangent vector is defined as 
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f""=[dX r  dï r  dp dU r  dÀ\- dÀT
a  dsTY (6.12) 

Then the predicted optimal margin control solution is obtained by 

' X' ' X' ' '  d X ~  

Y Y dY 

M M dp 

U = U + Ô dU 

4 4 

À; À, dÀ<; 

S 5 ds 

6.3.3 J Optimality corrector 

The optimality corrector brings the optimal margin control solution back to the 

optimal margin boundary manifold. 

Fx  Fy F. Fr  0 0 0 AA' F 

G, Gf Gu G, 0 0 0 A Y G 

HAX HM HAU HU .  0 0 0 Afi ^ A 

L\\\ Lu L* Lxr  Fr
x  Gr

x  A;v AL' Lx 

Ly\ Lyy Lyu Lyr F/ Gr
r H[Y AÂ 4 

L, L, y L>U LRF Fj G[. H 4R AÂ, U 

As _ 0 

6JJ.4 Selection of continuation parameter 

By selecting the variable with the largest differential change among state variables A", 

voltage, angle variables Y. control variable U, and load parameter//, the difficulty of 

transverse on the power system optimal margin boundary manifold at the largest feasible 

load margin condition could be avoided. 



www.manaraa.com

86 

6JJ.5 Determination of the largest feasible load margin 

The largest feasible load margin is determined by the sign change of df i .  In the event 

that all the controls hit the limits, the COPF formulation will degenerate into CPF with all the 

control parameters fixed at the limits. Thereby the sign change of d[i still indicates the 

largest feasible load margin. COPF based optimal margin boundary tracing could avoid the 

divergence nearby the largest feasible load margin. 

6.4 Optimal Margin Boundary Tracing Procedure 

Optimal margin boundary tracing includes the following steps. 

1) Specify a concerned loading scenario to measure load margin. 

2) Direct equilibrium tracing [10] to the Saddle node bifurcation at the base 

operating control configuration, which is taken as the initial point of optimal 

margin boundary tracing. 

3) Do optimal margin boundary prediction for an increased load level with the 

optimality predictor (6.11 ). 

4) Do optimal margin boundary correction with the optimality corrector (6.14). 

5) If a control variable exceeds the limit, add it into the active constraint set. 

6) Go to 3) until d/i changes sign, which indicates that the system has reached the 

largest feasible load margin. 

The flowchart is shown in Fig.6-1. 
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Yes Exceed control 
limit? 

No 

No Largest feasible 
load? 

Yes 

END 

START 

Specify a loading scenario 

Optimality predictor 

Optimality corrector Update active constraint set 

Output load level and its 

optimal control configuration 

SNB is obtained as initial point by direct 

equilibrium traced 

Figure 6-1 : Flowchart of optimal margin boundary tracing 

6.5 Numerical Results 

Optimal margin control tracing for voltage stability margin control optimization is 

also demonstrated through the numerical tests performed on the New-EngIand-39-bus system 

under the same assumptions as in chapter 5. 
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In addition. linear cost function /(£/) = W T U is assumed. All controls are equally 

weighted as unity. Detail system data and control constraints are presented in the appendix. 

Two control cases are studied using the optimal margin boundary tracing method. 

These control strategies are compared with linear programming (LP). The starting condition 

for optimal margin boundary tracing is the Saddle node bifurcation point obtained in power 

system equilibrium tracing, starting from the base case. 

6.5.1 Case I: Load Shedding 

The loads at buses 4. 7. 8 are chosen for load shedding in order to maintain a certain 

margin. Fig.6-2 provides information related to an optimal load shedding for a given voltage 

stability margin. In that figure, the solid curve corresponds to a nonlinear optimal margin 

boundary tracing. The long dashed ( ) curve corresponds to a margin sensitivity based 

linear programming (LP). An LP based approach is valid only up to a margin level of 28%. 

Even then, the accuracy of the LP based approach decreased with an increase in margin 

requirement. With OMBT a margin level of 38% is achieved. The margin stops at 38% when 

all the control variables hit the specified limits. 

Individual load shedding curves for buses 4. 7. 8 are the components of the nonlinear 

optimal margin boundary of the total load shedding. 
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1200; 
— OMBT total load shedding i 

load snedding at bus 8 
• load snedding at bus 7 

1000! — load shedding at bus * 
LP total load snedding 

0^ 
0 2 0 22 0 24 0 26 0.28 0.3 0.32 0 34 0.36 0.38 0 4 

voltage stability margin percentage 

Figure 6-2: Margin boundary optimization comparison between 

OMBT and Linear Programming 

6.5.2 Case 2: Control of Shunt Capacitance 

For a given set of capacitors placed at buses 6, 7. 8. and 20 to maintain a given 

margin, three cases are considered. 

• Optimal capacitor var requirements using the nonlinear optimal margin boundary 

tracing (OMBT) approach (solid curve in Fig.6-3). 

• Optimal capacitor var requirements using the linear programming approach (long 

and short dashed curve in Fig.6-3). 

• Capacitive var requirements when only the capacitor var at bus 20 is increased (A 

curve in Fig.6-3). 

We can easily see that there is a large error when a linear programming based 

approach is used to estimate the var requirements to maintain a given margin. Notice that 

only the optimal margin boundary tracing method could get the control configuration at 

which the system margin level reaches the maximum feasible amount By adding capacitor 
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only at bus 20. a system margin of no more than 22.5% will result. However, at this value the 

voltage at that bus might have exceeded its rated value. 

900-

800-

700 

t 600 

= 500 

— OMBT total capacitance aodea 
— capacitance added at Dus 20 

capacitance added at Bus 8 
— capacitance added at Bus 7 
— capacitance added at Bus 6 

capacitance added at Bus 20 only 
— LP total capacitance added 

i 
5 400-

1 3C0" S 
5 200-

100-

0#-——* *—* » * I r *— 
0 2 0.21 0.22 0.23 * 0 24 0 25 0 26 0 27 

voltage itaotkty margin percentage 

Figure 6-3: Margin boundary optimization comparison among OMBT. Linear 

Programming and. randomly chosen strategy (adding capacitance only at bus 20) 

6.6 Summary 

In this chapter, we present an approach based on the optimal margin boundary tracing 

to optimize the margin control for a given specified voltage stability margin. The system 

limit constraints are taken into account. Compared with the margin sensitivity based linear 

programming method, it takes account of limit effect and nonlinearity and hence is capable 

of solving for an optimal solution within a wide range of margin control. COPF based 

optimal margin boundary tracing could also avoid the divergence nearby the largest feasible 

load margin. 
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CHAPTER 7 LOCAL PARAMETERIZATION BASED UNIFIED TIME DOMAIN 

SIMULATION 

7.1 Introduction 

Time domain simulation of a large set of coupled algebraic and ordinary differential 

equations is an important part of power system analysis. Time domain simulation techniques 

are widely used for power system analysis because of their versatility and accuracy. The set 

of equations is usually formulated as a set of differential algebraic equations (DAE) [ 1 ]. 

The dynamic behavior associated with voltage instability involves a time horizon 

stretching from seconds to minutes. In [3], Taylor classifies voltage instability into transient 

and long term, according to the time it takes to collapse after a triggering event. For example, 

the 1987 collapse of the Tokyo Electric Company system [531 evolved over a period of about 

30 minutes. However the 1985 Florida power failure due to voltage collapse evolved over a 

short period of 4 seconds [I J. Thus, the transient stability analysis and the long-term analysis 

have to be combined into a single computer program, which is quite different from the usual 

formulations that tend to decompose the dynamic behavior of power systems into different 

time horizons. 

In recent years, a large effort has been spent in this area [41-45.54.55]. In all cases, 

this formidable stiff problem can be solved by the use of variable step size and variable order 

integration algorithms. Even though the multiple time scale simulation is solved by variable 

step size, the numerical problems associated with singularities near the collapse point is still 

a problem. 

Due to the heavy non-linear behavior shown by the stressed power system, nonlinear 

analysis and nonlinear global (practically within a certain physical range) control are in 
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essence required by the nature of non-linearity around the voltage stability boundary. The 

timing of corrective control is vital for whether the system stability can be restored. The 

conventional time domain simulation algorithms encounter numerical difficulty near the 

voltage collapse point. So a more robust and reliable algorithm is needed for an accurate 

simulation of the dynamics associated with voltage collapse. This is also an indispensable 

tool for determining the timing of the corrective control actions needed to restore voltage 

stability. 

With the proposed manifold based method, the singularity problem associated with 

power system differential algebraic equations under heavy load condition could be avoided. 

This chapter presents a novel local parameterization based time domain simulation that not 

only solves multi-time-scale problem but also robust near the collapse point. 

7.2 DAE Modeling for Time Domain Simulations 

7.2.1 Multi-Time-Scale DAE Modeling 

The power system multi-time scale DAE modeling for time domain simulation is 

given by (7.1-7.3). 

.V = F"(X.Y.Z.U) (7.1) 

0 = G"(XA\Z.i') (7.2) 

Z = H°(X. Y. Z.U) with initial conditions X(t0) = X0  and Z(t0) = Z0 (7.3) 

In general, continuous long term dynamic represented by Z is separated from the 

short-term dynamics X. Here Z is a dynamic variable rather than an algebraic variable. Note 

that the models valid for different time scales are presented collectively under this full time 

scale power system DAE presentation. 
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Short-term time scale dynamic variables may represent the following components: 

• Synchronous generators and their regulators, such as AVRs and governors. 

• HVDC systems 

• SVCs 

• Induction motors 

Long-term time scale dynamic variables include: 

• Thermostatic and aggregate load recovery 

• LTC dynamics 

• Secondary voltage control 

• Shunt capacitor/reactor switching 

• Over excitation limits 

• Armature current limiters 

7.2.2 Quasi-Steady State DAE Modeling 

In Quasi Steady State (QSS) analysis short-term dynamics are neglected by replacing 

the short-term differential equations with their equilibrium equations. This simplification 

results in the observation of only long term phenomena. 

The power system QSS DAE modeling is given [5.18] by (7.4-7.6). 

0 = F\X.Y.Z.U) (7.4) 

Q = G"(X.Y.Z.L') (7.5) 

Z = //" (À'. Y.Z.i') with initial conditions Z(tn) = Z0 (7.6) 

Time domain integration is only applied on Z with X and Y updated as algebraic 

variables. 
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7.2.3 Unified DAE Modeling of Power System Dynamics 

To demonstrate the methodology developed in this chapter, the multi-time-scale DAE 

model described by 7.1 to 7.3 is represented in a compact form as is shown below. This 

compact notation is called unified DAE. 

S = D(S.R.U) (7.7) 

0 = A(S.R.l r) (7.8) 

S(t/> ) = S0 .  where S is the state variable that represents [%' Z ' f  in multi-time 

scale modeling and Z in QSS DAE modeling; R is the instant responsive variable Y in multi-

time scale modeling and \x' Yr f in QSS DAE modeling. Corresponding relations hold for 

D and A. C always stands for a set of parameters characterizing system control configuration. 

7 J Formulation of Conventional Time Domain Simulation of Unified DAE 

7.3.1 Conventional Time Domain Simulation of Unified DAE 

Denote as the integration time step size. At step, given [s,f S' r  R" i'  f and 

ztf'. conventionally the following set of equations are solved for [s"*hr 5"*"r at 

= t' +z^*' (Note that t '~ [  acts as a natural parameter. In conventional time domain 

simulation, it is pre-specified rather than calculated.) 

D(S" 1 .  S" 1 .  R l ' , . t ,; ,) = D{S" \  R"1. =0 (7.9) 

A(S" 1.5'". /?'*'./;*' ) = .4(5^. /?'*'.Lr) = 0 (7.10) 

= Q (7.11) 

where / presents the integration methods that may be applied in time domain 

simulation. They could be explicit methods such as the Euler method or implicit methods 
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such as the Backward Euler or the Trapezoidal Rule methods. For simplicity, the Euler 

method is employed in this chapter to demonstrate the difference between conventional and 

local parameterization based time domain simulation algorithms. For the Euler method 

equation. (7.11) will be replaced by (7.12). 

= -S' -t?S' = 0 (7. 12) 

7.3.2 Conventional Time Domain Simulation of Multi-Time-Scale DAE 

Specifically for a conventional time domain simulation of multi-time-scale DAE. a 

set of nonlinear equations are solved for [A"~,,r Y'"ur  Zu 'ur  Z"~"rf with 

s p e c i f i e d g i v e n [ . r r  X , r  Y , r  Z , r  Z' r]. 

For a Euler method integration, first A"" and Z"' can be expressed in term of A". X. 

Z' and Z. 

A"*1 = A" +r;".r (7.13) 

Z"1 =Z' +/;-'Z' (7.14) 

And then A""'" Z'"' )T  f is solved with specified t ' '* . as shown below 

F( y. x'" .z'" .r;*1 )=f° ( x' + x'C . r". z' + z1/;*1 .u) - A"*1 = o ( 7.151 

^(K'" ..R'" .Z'" ) = //"(A' + .Y' .Z' +Z't?.U)-Z"' =0 (7.16) 

C(R". x"1. z'*1)=G°(A'+Ft?. r~l.z' + it.u)=0 (7.M 

Limitations of a conventional algorithm in the solving of multi-time scale DAE: 

• Stiff problems associated with a conventional multi-time-scale time domain 

simulation causes the ill condition of the Jacobian matrix. For multi-time scale, 

the ratio of the eigenvalue associated with a fast-time scale and that associated 
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with short-time scale is usually quite large. This leads to the stiff problem that 

brings numerical difficulty in solving for both time scales. 

• A divergence of solution could be encountered during a time domain simulation 

due to the singularity of Gf. This corresponds to the exact voltage collapse point 

in the time domain. 

7.3.3 Conventional Time Domain Simulation of QSS DAE 

In QSS time domain simulation we solve only for 

r-„r z«,."r f With specified t?. given [x , r  Y , r  Z" Z , rJ. 

X ' 1  and Z'" could be expressed similarly to (7.13) and (7.14). Then 

Z'"urJ is solved with specified t '~ [  (a natural parameter). 

F( >"*•. z"1 .t ) = fu ( x'". r". z' + .0=0 ( 1.18) 

g( r". z'" ./;•') = g° ( .v'" .r'.z'+ z'C .0=0 ( 1.19) 

h (Y"' ,  z '" .  r ) = //'=< .v1. r". z' + z'i'i1. u) - z1" =0 (7.20) 

Limitations of conventional algorithm in the solving of a quasi-steady state DAE: 

• Divergence of solution could be encountered during a time domain simulation due 

• Even though stiff problems are avoided by time scale decomposition, the 

assumption of the existence of stable equilibrium of fast dynamics could be 

violated and could lead to over-optimistic results. 

to the singularity of 
Gx  G f  
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7.4 Local Parameterization Based Time Domain Simulation of Unified DAE 

The solution manifold of (7.9-7.11) can be naturally parameterized by /If1. It forms a 

one dimensional manifold. Similar to equilibrium tracing [10]. the whole time trajectory is 

traced by a single step predictor-corrector approach on each piece of solution manifold 

defined by (7.9-7.11). Fig.7-1 shows the conceptual diagram. 

Time trajectory 
connected by 
piecewise 
manifold 

Trajectory corrector 

t 
Figure 7-1: locally parameterized time trajectory tracing 

7.4.1 Initial Point of Piecewise Manifold 

At /,h step, the trajectory point [s,r S'T R'T t'J and fl*1 = 0 satisfies the equations 

(7.9-7.11). It works as an initial point of the piecewise manifold defined by (7.9-7.11) at 

(M)th step. Then, the next trajectory point [s"*"r S"*l)T R0*"7 could be achieved 

by a single iteration of the trajectory predictor and corrector along this piecewise manifold. 

7.4.2 Trajectory Predictor 

From the initial point [s,r S'T R'r t'\ and t? = 0. the next point can be 

predicted from the following equation. 
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4 

1 O
 i 

dS"1 "0 

O
 

--
r o

 dS"[ 0 

A o A dR1*' 0 

_± 

(7.21) 

Then the predicted solution is 

5'*1' >" 'dS" l~ 

S"1  S1 

+ S 
dS 

= + S 
R" 1 R' dR"1 

0 1 
I-

, 

1 

(7.22) 

S is the step size that controls precision and progress of the local parameterization 

based time domain simulation. 

When the Euler integration method is applied, that is 

The following predictor with a reduced dimension could be achieved (after reduction 

is applied with (7.21)) 

(7.23) 
[ - /  D ' r  D ' s S " * ~  'dS"* ' " o "  

\ 0 .4', dR"{ = 0 

l •• .< . _±l  

7.4.3 Trajectory Corrector 

The Newton method serves as the trajectory corrector. 

4 

1 o
 1 

"AS1*1" "br 

o
 

o
 AS"1 > 

A/?'*' r 
e* 0 

(7.24) 

The time is updated by r"' = t' (7.25) 
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Now a new time trajectory point [5"'"r S u H > T  R { " [ ) r  /'*' f has been achieved. 

Error tolerance is set to control the accuracy of the solution. Here subscripts stand for the 

derivative of the respective functions 

When the Euler integration method is applied, the following corrector with reduced 

dimension could be achieved. 

"-/ D; "AS'*1 " >" 

o 4 45'" A/r1 .4' (7.26) 
0 

7.4.4 Continuation Parameter Selection 

The variable with the largest variation among [sr S r  R r  is selected as the 

continuation parameter. 

7.5 Local Parameterization Based Time Domain Simulation for Special Cases 

7.5.1 Multi-Time-Scale DAE 

In this section we specifically address the multi-time scale modeling as described by 

equations (7.1-7.3). The solution manifold of (7.15-7.17) can be parameterized by ftf1. It 

forms a one dimensional manifold. Similar to equilibrium tracing, the whole time trajectory 

is traced by a single step predictor-corrector approach on each piece of solution manifold as 

defined by (7.15-7.17). 

7.5.1.1 Trajectory predictor 

Through the differentiation of (7.15-7.17). the Jacobian matrix could be achieved. 

From the initial point [A"'~ Y' r  Z'T  X'T  Z'T  t '  F. the next point can be predicted from 

the following equation utilizing an augmented Jacobian matrix. 
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F?' 0 F°x'X- + Fl'Z' 

0 H]! -lM HxX' + H°z'Z' 

0 G,0' 0 G^r + G°'Z' 

Then the predicted solution is 

A"*1 X' dX'~x 

Z'" Z' 
+ Ô 

dZ'rl 
— + Ô 

r dY 

0 . 

7.5.1.2 Trajectory corrector 

Newton method serves as the trajectory corrector. 

"-L. r o 

0 H*' -IJ%a H^X'+H^T 

0 Gy 0 G°'.r +G°z'Z' 

The time is updated by (7.25). 

Now a new time trajectory point [.r'*"r r'*"r Z,,*"r T""" Zu'ur r'f has 

been achieved. 

7.5.1J Continuation parameter selection 

The variable with the largest variation among [fr XT ZT is selected as the 

continuation parameter. 

The advantages of local parameterization are as follow. 

• When a system undergoes fast dynamics, time step size is adjusted according 

to the variation of s. For example, if the ratio of dX: to t A is the largest then 

dX"1 " o "  

dZ 0 

</r~l 0 

±1 

(727) 

F 

AZ'"1 H 

Ar**1 G 

0 

(7.29) 
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x will be chosen as the continuation parameter. tx is calculated so that each 

step change of x, will not be missed. If d\\ is quite large, which indicates fast 

dynamics, smaller is obtained. 

• When a system undergoes slow dynamics, dX is small, which indicates slow 

dynamics, then a larger tx is obtained comparable to step size of continuation 

power flow. Therefore the number of integration steps is dramatically reduced 

for slow dynamics. 

• The adaptable time step size is achieved based on continuation parameter 

selection. The proposed approach does not need second order or higher order 

information to obtain the time step. Conventional methods need this high 

order information. 

• The singularity of network Jacobian matrix could be avoided. 

7.5.2 QSS DAE 

In this section we specifically address QSS modeling as described by equations (7.4 

to 7.6). The solution manifold of (7.18-7.20) can be parameterized by . Again it forms a 

one dimensional manifold. Similar to equilibrium tracing, the whole time trajectory is traced 

by a single step predictor-corrector approach on each piece of solution manifold as defined 

by (7.18-7.20). 

7.52.1 Trajectory predictor 

From the initial point [.\"r Y'r Z'r Z'T t'J. the next point can be predicted 

from the following equation. 
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"tf.v H?' H y X '  + H°z'Z'~ 

- K
 " 0 "  

F0' r*0z 
hr 0 F°'X' + F°'Z' dX"1 0 

G1': GY 0 G°;X' + GZ'Z' dY 0 

±1 

Then the predicted solution is 

ZM Z' dZ"1 

.V" A" dX"1 
= 

Y*I»L Y' dY'" 

0 _dt'I[ . 

7.5.2.2 Trajectory corrector 

Newton method serves as the trajectory corrector. 

.V" +  H Z Z ' ~  "AZ"1 " 
r»Ui 

RV F/" 0 r»0# 

^V A" +  F Z Z '  M"*' F 

G y  
G:" 0 G'.;.' A" + G%'Z' AI"*' G 

- e '  
0 

(7.30) 

(7.31) 

(7.32) 

The time is updated by (7.25). 

Now a new time trajectory point [.V"*llf z"'ur z"~ur r'-'f has been 

achieved. 

7.5.2 J Continuation parameter selection 

The variable with the largest variation among [.fr YR ZR r4f is selected as the 

continuation parameter. 

The advantage of local parameterization is that 
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• We can avoid the singularity of . Solution no longer diverges during the 
L3 

DAE time domain simulation when QSS is approaching the voltage collapse 

point. 

7.6 Manifold Based Time Domain Simulation Procedure 

I ) Set up an initial operating point by evaluating the state variable based on network 

variables. 

2) If a contingency or control event occurs, determine the post-event condition 

[.V" r" i, f of the power system and calculate [rr .vr z"rF under the post-event 

network configuration with (7.24) 

3) Predict trajectory with (7.21-7.22) 

4) Correct trajectory with (7.24-7.25). 

5) Go to 2) until it reaches the specified end time for the simulation 

The flowchart of the procedure is shown in Fig.7-2. 
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Time for contingency 
or control? 

Yes 

No 
End time? 

Yes 

END 

START 

Trajectory corrector 

Calculate It-

Trajectory predictor 

Choose type of time 
domain simulation 

Determine post-event condition of 

Set up initial operating point by 
evaluating state variable based on 

network variables 

Figure 7-2: Flowchart of manifold based time domain simulation 
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7.7 Numerical Simulation Results 

Manifold based unified time domain simulation is demonstrated by utilizing the same 

New-England-39-bus system that was used before. The same base operating point as 

previous chapters works as the initial point. Here a constant load variation rate is assumed, so 

that Z = Z0 =6.0 MW/sec at all the load buses. The detailed system data is presented in the 

appendix. 

Various cases are considered to demonstrate the flexibility of this methodology for 

time domain simulation with multiple time scales. The starting condition for local 

parameterization based time domain simulation is the base case power flow as is presented in 

Appendix. 

7.7.1 Results for Multi-Time Scale Time Domain Simulation 

The following time domain simulation cases are considered: 

Case I : Load variation with time without contingency 

Case 2: Load variation with time before and after a line outage 

Case 3: Load variation with time before and after load shedding 

Case 4: Load variation with time before and after a capacitor switching 

Case 5: Fixed load before and after a line outage 

In case I. here the load is varied at a constant rate at all the buses. In this case Hopf 

bifurcation occurs at around 30 sec. as shown in Fig.7-3. The period of this oscillation is 

close to I sec. as we can see from Fig.7-4. which is an enlarged section of Fig.7-3 between 

134 sec. and 150 sec. 



www.manaraa.com

106 

O 985 -

\ 
0.98 

0 95-

Voltage Time Domain Traiectory 

0.975 

0 0 965 

20 40 60 80 100 120 140 160 

time dec) 

Figure 7-3: Small disturbance time domain simulation 
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Figure 7-4: Enlarged oscillatory behavior 

Case 2: In this example the branch from bus 7 to bus 8 is tripped at 80 sec. At the 

same time, the load is also changing at a constant rate. Fig.7-5 shows the time domain 
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simulation result. The time distance to collapse is shortened. This program could also easily 

handle the hybrid time scale problem due to the optimal selection of the continuation 

parameter. The selection of the continuation parameter is among voltage variables. The time 

step length is determined by constant step change of voltage, ensuring the larger time step 

size before outage disturbance and small enough time step size to characterize the system 

dynamics after the outage. 
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Ô 0 96 mtafjL 

! 0 955 -

0 95 -
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. ,i 

" • I |  

20 40 60 80 100 120 

time (sec) 

Figure 7-5: Line 8-9 is out at 80 sec 

Case 3: In this example, a 100MW load is shed at bus 8. It is done at 80 sec., i.e. 20 

seconds after L7-8 is out. Fig.7-6 shows the time distance to collapse is enlarged compared 

with the contingency case in Fig. 7-5. There is no numerical problem in time domain 

simulation with this heaviiv stressed svstem. 
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Figure 7-6: Load shedding at 20 seconds after contingency 

Case 4: In this example a capacitance of 500 Kvar is added at bus 8. It is also added 

at 20 seconds after L7-8 is out. Fig.7-7 shows no evidence of enhancement of time 

disturbance to voltage collapse even though bifurcation theory based margin sensitivity 

indicates adding capacitance could increase the voltage stability margin. It seems that load 

dynamics make an impact on how capacitance affects system stability. 
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Figure 7-7: Capacitance is on at 20 seconds after the contingency 

Case 5: In a conventional time domain simulation, in general, there is no load 

variation during simulation. The local parameterization based time domain simulation could 

also easily handle this type of time domain trajectory. Fig.7-8 shows the time domain 

simulation when the branch from bus 7 to bus 8 is out at base case with the load kept 

constant during the simulation period. 
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Figure 7-8: Line 8-9 is out at base condition with no load variation 

7.7.2 Results for QSS Simulation 

A QSS time domain simulation under only load variation is demonstrated in Fig.7-9. 

Note that the QSS method has its limitations in detecting the oscillatory instability due to fast 

dynamics. This is caused by the simplification of the DAE model based on the assumption 

that the equilibrium of undergoing fast dynamics could be achieved and stable. 
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Figure 7-9: Quasi-Steady State simulation 

7.7.3 Comparison with Margin Boundary Tracing 

The margin achieved from margin boundary tracing is based on the identification of 

Saddle node or Hopf bifurcation. The assumption for bifurcation based analysis is that the 

bifurcation parameter is always time invariant. However, load is time variant in the time 

domain simulations of this chapter. Load dynamic effect on system stability is determined. 

As the results show, when affected by load dynamics, the system stability margin is always 

less than the margin calculated from margin boundary tracing, which is based on bifurcation 

theory. 

7.8 Summary 

In this chapter, a local parameterization based unified time domain simulation is 

presented. This methodology can be applied in both multi-time-scale and quasi-steady state 

DAE modeling of power system dynamics. 
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Local parameterization based time domain simulation could easily handle multi-time-

scale dynamics so that fast dynamics could be captured along with slow dynamics. It is 

computationally efficient due to local parameterization. Moreover, numerical difficulty 

associated with conventional DAE time domain simulation algorithms could be avoided for a 

stressed system. 

Local parameterization based QSS time domain simulation also could avoid the 

divergence of Newton iteration and deterioration of accuracy when it encounters Saddle node 

bifurcation of short-term dynamics. 
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CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

8.1 Conclusions 

In stressed power system networks non-linearity becomes the dominant factor in 

studying the system's behavior. New nonlinear analysis tools are needed, both for small-

disturbance as well as large disturbance stability studies. In this thesis, based on manifold 

theory, a set of new and novel algorithms for the nonlinear analysis of power system stability 

are developed. The proposed algorithms cover bifurcation, optimization and multi-time scale 

time domain simulation modifications, to study both the power system small-disturbance and 

large-disturbance voltage stability. 

Power system small-disturbance stability computation involves: 

• Power system equilibrium tracing with the detection of Saddle node and Hopf 

bifurcations: 

• Unified stability margin boundary tracing in multi control parameter space for 

Saddle node and Hopf bifurcations: 

• Continuation optimal power flow for achieving optimal margin control: 

Power system large-disturbance stability computation involves: 

• Time domain trajectory tracing for power system dynamics. 

The proposed manifold based computational algorithms are large-scale system 

oriented. The algorithms are designed to avoid numerical ill conditioning when the system 

approaches a critical point both for steady state as well as time domain simulations. 

Numerical examples based on the New England 39 bus system are presented to demonstrate 

the versatility and usefulness of these algorithms. The new techniques are very useful for 

power system planning as well as real time margin monitoring 
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In summary, this thesis proposed a general methodology that can be used: 

• To trace nonlinear voltage as well as oscillatory stability boundaries 

• To find the minimum cost to obtain a specified margin 

• To do numerically well conditioned time domain simulations 

The major contributions of this approach are: 

• A unified framework to trace the margin boundary in multi-parameter space under 

a specified loading and control scenario. The framework could be applied to 

monitor the load margin variation constrained both by voltage collapse and 

system oscillations. The framework doesn't require eigenvalue calculation. 

• A nonlinear optimization method that calculates the minimum cost control 

solution for a given margin. Existing methods use linear margin sensitivities to 

include the margin constraint. 

• A local parameterization based time domain simulation for large disturbance 

dynamic voltage stability analysis and corrective control. The approach is capable 

of capturing multi-time scale dynamics. For a stressed system, numerical 

difficulty associated with traditional algorithms could be avoided. 

8.2 Suggestions for Future Work 

• The Hopf detection algorithm can be further improved for any matrix other than 

the normal matrix. 

• An efficient and optimal integration of steady state and time domain analysis that 

easily allows for one to get the answers to questions of timing and the amount of 

control needed to avoid voltage collapse. 
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APPENDIX DATA OF SAMPLE TEST SYSTEM - NEW ENGLAND SYSTEM 

1. New England 39 Bus System One Line Diagram 

Figure A-l : New England 39 bus system diagram 

2. The IEEE Format Base Case Power Flow Data of the New England System 

BUS DATA FOLLOWS 
I BUSt I 1 0 I 0410 -13 41 000 
: bus: 1 I 0 10310-1122 OOO 
3BUS3 1 1 0 1 0050 -13 88 322.00 
4BUS4 I 1 0 09858 -1402 500 00 
S BUSS 1 1 0 0 9920-12.25 OOO 
SBUS6 1 1 0 0 9952-11 41 000 
7 BUS? I 1 0 0 9847-13 76 233 80 
S BUSS I 1 0 0 9839-1433 522.00 
9BUS9 1 1 0 1 0232-1460 0 00 
tOBUSlO 1 1 0 1 0056 9 42 OOO 
11 BUSH 1 1 0 1 0009-10 10 000 
I2BUS12 1 I 0 0 9872-10 24 8 50 
13BUS13 1 1 0 1 0009-10 23 000 
14BUS14 1 I 009940-12.19 000 
15BUS15 1 1 0 0 9896 -13.34 320 00 
16BUSI6 1 1 0 1 0028-1216 329 40 
I7BUS17 1 I 0 1 0065-13 12 000 
I8BUSU 1 I 0 1 0045-13 86 158 00 
I9BUS19 1 1 0 1 0395 -7 87 000 
20BUS20 1 I 0 0 9853 -9 48 680.00 
21 BUS21 I 1 010112 -9 83 27400 
22BUS22 1 1 0 1 0381 -5 44 000 
23BUS23 1 1 0 1 0316 -5 65 24750 
24BUS24 1 I 010015-12.07 308.60 
25BUS25 I I 0 I 0458 -10 02 22400 
26BUS26 1 I 010294-1140 13900 
27BUS27 1 1 0 1 0128 -13 40 281.00 
28BUS28 1 1 0 1 0305 -8.01 206 00 
29BUS29 1 1 0 1 0316 -5 23 283.50 
30BUS30 I I 2 1 0200 -8.97 000 
31BUS31 I I 3 0 9820 0 00 OOO 
32BUS32 I I 2 0 9831 -1.58 0.00 
33BUS33 1 I 2 0 9972 -2.80 0.00 
34BUS34 1 1 210023 .449 000 
35BUS35 1 I 2 1 0493 4 58 000 

39 [TEMS 
0 00 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 0 1 
0 00 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 u : 
12140 0 00 0 00 0 00ooooo 00000 0 0000 0 0000 0 0000 0 3 
184 00 0 00 0 00 0 00OOOOO 00000 0 0000 0 0000 0 0000 0 4 

0 00 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 0 5 
0 00 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 0 6 
$4 00 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 I) 7 

176 00 0 00 0 00 0 00 OOOOO 00000 0 0000 OOOOO 0 0000 0 8 
0 00 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 OOOO 0 9 
000 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 0 10 
0 00 000 000 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 II 
88 00 0 00 0 00 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 0 I: 
000 0 00 0 00 OOOO0000 0 0000 0 0000 0 0000 0 0000 0 13 
0 00 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 14 
153 00 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 15 
132,30 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 16 
0 00 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 17 
30 00 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 18 

000 0 00 0 00 0 00OOOOO OOOOO OOOOO OOOOO OOOOO 0 19 
103.00 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 20 
11500 0 00 0 00 0.00OOOOO OOOOO OOOOO OOOOO OOOOO 0 21 
000 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 22 
8460 0 00 0 00 0 00 0 0000 OOOOO OOOOO OOOOO OOOOO 0 23 

0 00OOOOO OOOOO OOOOO OOOOO OOOOO 0 24 
00000000 OOOOO OOOOO OOOOO OOOOO 0 25 
0 00 0.0000 0.0000 OOOOO OOOOO OOOOO 0 26 
000 0 0000 OOOOO OOOOO OOOOO OOOOO 0 27 
00000000 OOOOO OOOOO OOOOO OOOOO 0 28 
000 0 0000 OOOOO OOOOO OOOOO OOOOO 0 29 
000 1 0475 380 00-100 00 OOOOO 0 OOOO 0 30 
0 000 9820 600 00-300.00 0.0000 O OOOO 0 31 
OOO 0.9831 500.00-300 00 OOOOO OOOOO 0 32 
0 00 0 9972 500 00-300 00 0 0000 0 0000 0 33 
0 00 L0I23 450 00-25000 OOOOO O OOOO 0 34 
0 00 % 0493 600 00 250 00 0 OOOO 0 OOOO 0 35 

92.20 
47.20 
4700 

75-50 
2760 

126-90 
000 
0.00 

000 
000 
000 
000 
000 
000 

230 00 228-51 
723 00 28066 

000 
000 
000 
000 
000 
0.00 

000 630 00 275.85 
000 61200 19736 
0.00 488-00 21774 
0 00 630 00 31470 
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36 BUS36 
37BUS37 
38BU538 
39 BUS39 

•999 
BRANCH DATA FOLLOWS 

0 00 0 00 540 00 170 64 0 00 I 0635 500 00-220 00 0 0000 0 0000 0 36 
0 00 0 00 520 00 69 56 0 00 I 0278 500 00 -220 00 0 0000 0 OOOO 0 37 
000 0 00 810 00 159 60 0 00 1 0265 500 00-300 00 0 0000 0 0000 0 38 

I I 2 1 0300-1469 1104 00 25000 1000 00 12437 000 I 0300 900 00-800 00 0 0000 0 0000 0 

1 I 210435 201 
1 1 2 1 0478 -3 43 
1 I 2 1 0265 1 73 

48 ITEMS 
2 1 1 I 0 0 003500 0 041100 069870 0 0 
39 I I 10 0 002000 0 050000 0.37500 0 0 
39 1 12 0 0 002000 0 050000 0 37500 0 0 
3 1 1 10 0 001300 0 015100 0 25720 0 0 
25 M 10 0 007000 0 008600 0 14600 0 0 
4 1 1 10 0 001300 0 021300 0.22140 0 0 
18 ! I 1 0 0 001100 0.013300 0.21380 0 0 
5 1 1 I 0 0 000800 0 012800 013420 0 0 
14 I 1 1 0 0000800 0012900 0 13820 0 0 
6 1 1 1 0 0 000200 0 002600 0 04340 0 0 
8 1 1 I 0 0 000800 0 011200 014760 0 0 
7 I 1 1 0 0 000600 0 009200 011300 0 0 
11 1 1 1 0 0 000700 0 008200 013890 0 0 
8 1 1 1 0 0 000400 0 004600 0 07800 0 0 
9 1 1 10 0 002300 0 036300 0 38040 0 0 
39 1 1 10 0 001000 0 025000 1 20000 0 0 
Il I 110 0 000400 0 004300 0 07290 0 0 
13 1 1 10 0 000400 0 004300 0 07290 0 0 
14 1 1 10 0 000900 0 010100 0 17230 0 0 
1 5  I  1 1 0  0 0 0 1 8 0 0  0 0 2 1 7 0 0  0  3 6 6 0 0  0  0  
16 1 1 1 0 0 000900 0 009400 0 17100 0 0 
17 1 1 10 0 000700 0 008900 013420 0 0 
19 1 1 1 0 0 001600 0 019500 0 30400 0 0 
21 1 I I 0 0 000800 0 013500 0 25480 0 0 
24 1 1 1 0 0 000300 0 005900 0 06800 0 0 
18 I 1 1 0 0 000700 0 008200 0 13190 0 0 
27 1 1 1 0 0001300 0017300 032160 0 0 
22 1 1 10 0 000800 0 014000 0 25650 0 0 
23 I 1 1 0 0 000600 0 009600 0 18460 0 0 
2 4  1  1 1 0  0  0 0 2 2 0 0  0  0 3 5 0 0 0  0  3 6 1 0 0  0  0  
26 I 1 I 0 0 003200 0 032300 0.51300 0 0 
27 I I I 0 0 001400 0 014700 0 23960 0 0 
28 1 1 1 0 0 004300 0 047400 0 78020 0 0 
29 1 t I 0 0 005700 0 062500 I 02900 0 0 
29 I 11 0 0 001400 0015100 0 24900 0 0 

30 1 1 I I 0000000 0 018100 0 00000 0 0 
31 1 1 1 I 0000000 0 050000 0 00000 0 0 
31 1 1 2 ! 0 000000 0 050000 0 00000 0 0 
3 2  I  1 1 1  0  0 0 0 0 0 0  0  0 2 0 0 0 0  0  0 0 0 0 0  0  0  
II I 111 0001600 0 043500 0 00000 0 0 
13 1 11 I 0001600 0 043500 0 00000 0 0 
2 0  I  1 1 1  0 0 0 0 7 0 0  0  0 1 3 8 0 0  0  0 0 0 0 0  0  0  

19 33 1 1 1 I 0000700 0.014200 0.00000 0 0 

20 34 I II 1 0000900 0 018000 0 00000 0 0 
22 35 1 1 I 1 0000000 0 014300 0 00000 0 0 
23 36 I 1 1 I 0000500 0 027200 0 00000 0 0 
25 37 1 1 1 I 0000600 0 023200 0 00000 0 0 
29 38 I I 1 1 0000800 0 015600 0 00000 0 0 

•999 
LOSS ZONES FOLLOWS 2 ITEMS 
•99 
INTERCHANGE DATA FOLLOWS I ITEMS 
•9 
TIE LINES FOLLOW 0 ITEMS 
-999 

3 
3 
4 
4 

5 
5 
6 
6 
7 
8 
9 
10 
10 
13 
14 
15 
16 

16 

16 
16 

17 
17 

21 
22 
23 
25 
26 
26 
26 
28 

6 
6 
10 
12 

12 

19 

0 00 OOOOO 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 I 
0 0 0 0 0000 0 000.0000OOOOO00000 0000000000 2 
0 00 00000 000000000 00000 0000 0000000000 3 
0 00 00000 0 000 00000 00000 0000 0 00000 0000 4 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 5 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 6 

0 00 00000 000000000000000000 0000000000 7 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 8 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 9 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 10 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 II 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 12 
0 00 00000 0 00000000000000000 0000000000 13 
0 00 OOOOO OOO0 0000 0 0000 0 0000 0 0000 0 0000 14 
0 00 00000 OOO0 00000 00000 0000 0 00000 0000 15 
0 00 00000 000000000000000000 0000000000 16 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000OOOOO 17 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 18 

0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 19 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000OOOOO 20 
0 0 0 0 0000 0 00 0 0000 0 0000 0 OOOO 0 0000 0 0000 21 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 22 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 a 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 24 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 25 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 26 
0 00 00000 000000000 0000OOOOO 0 0000 0 0000 27 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 28 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 29 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 50 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 31 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 32 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 33 
0 0 0 0 0000 0 00 0 0000 0 0000OOOOO 0 0000 0 0000 34 
0 0 0 0 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 35 
0 0 0 1 0250 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 36 
0 0 0 1 0700 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 37 
0 0 0 1 0700 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 38 
0 0 0 1 0700 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 39 
0 00 10060 000 0 9200 I 0800 0 0000 0 9500 1 0500 40 
0 0 0 1 0060 0 00 0 9200 1 0800 0 0000 0 9500 1 0500 41 
0 00 10600 000 0 9200 I 0800 0 0000 0 9500 1 0500 42 
0 00 10700 000000000000000000 0000000000 43 
0 00 1 0250 00008750 I 1250 0 0000 0 9500 1 0500 44 
0 0 0 1 0250 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 45 
0 0 0 1 0000 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 46 
0 0 0 1 0250 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 47 
0 0 0 1 0250 0 00 0 0000 0 0000 0 0000 0 0000 0 0000 48 

3. The ISU Format of Dynamic Data of the New England System 

NEWENGLAND SYSTEM STABILITY RELATED PARAMETERS OF GENERATOR & EXCITATION & GOVERNOR & 
SVC & OLTC & DYNAMIC LOADS 
Generator transient parameter follows 
N'um Gen name Xd Xq X*d X*q Rs Tdo Tqo Mg Dg 
30 BUS30 0.1000 0.0690 0.0310 0.0690 0.0002 10.2000 0.010 84.000 5.000 
31BUS31 0.2390 0.2820 0.0700 0.1700 0.0002 6.3600 UOOO 60.600 5.000 
32BUS32 0.2300 0.2370 0.0530 0.0880 0.0002 5.7000 1.5000 71.600 5.000 
33BUS33 0.2620 0.2380 0.0440 0.1660 0.0002 5.6900 UOOO 57.200 5.000 
34BUS34 0.6700 0.6200 0.1320 0.1660 0.0002 5.4000 0.4400 52.000 5.000 
3) BUS35 0.2340 0.2410 0.0300 0.0810 0.0002 7.3000 0.4000 69.600 5.000 
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36 BUS36 0.2950 
37BVS37 0.2900 
38 BUS38 0.2110 
39 BUS39 0.0200 

-999 
Generator control system ( excitor 
Sum Gen name Ke Te 
30 BUS3Ô 1.0000 0.2500 

0.2920 0.0490 0.1860 0.0002 5.6600 
0.2800 0.0570 0.0910 0.0010 6.7000 
0.2050 0.0570 0.0590 0.0002 4.7900 
0.0190 0.0060 0.0080 0.0002 7.0000 

1.5000 52.800 5.000 
0.4100 48.600 5.000 
1.9600 69.000 5.000 
0.7000 1000.000 10.000 

• AVR - governor ) parameter follows 

0.4100 
0.5000 
0.5000 
0.7900 
0.4700 
0.7300 
0.5300 
1.4000 
1.0000 

31BUS31 1.0000 
32 BUS32 1.0000 
33 BUS33 1.0000 
34 BUS34 1.0000 
35 BUS35 1.0000 
36 BUS36 1.0000 
37 BUS37 1.0000 
38 BUS38 1.0000 
39 BUS39 1.0000 
999 
Dynamic loads data follows 
Num Bus name TpL 
999 

Static var compensator data follows 
Num Bus name Ksvs Tsvs 
-999 
On load tap-changer data follows 
S N* Secondav Bus P N Prime Bus 
-999 

Se Ka Ta Kf Tf 
0.0000 20.0000 0.0600 0.0400 
0.0000 40.0000 0.0500 0.0600 
O OOOO 40.0000 0.0600 0.0800 
0.0000 40.0000 0.0600 0.0800 
0.0000 30.0000 0.0200 0.0300 
0.0000 40.0000 0.0200 0.0800 
0.0000 30.0000 0.0200 0.0300 
0.0000 40.0000 0.0200 0.0900 
0.0000 20.0000 0.0200 0.0300 
0.0000 20.0000 0.0200 0.0300 

Tch Tg Rg 
1.0000 1.6000 0.2000 0.0500 
0.5000 54.1000 0.4500 0.0500 
1.0000 10.0000 3.0000 0.0500 
1.0000 10.1800 0.2400 0.0500 
1.0000 9.7900 0.1200 0.0500 
1.2500 10.0000 3.0000 0.0500 
1.0000 7.6800 0.2000 0.0500 
1.2600 7.0000 3.0000 0.0500 
1.0000 6.1000 03800 0.0500 
1.0000 10.0000 10000 0.0500 

TqL ALd BLd ALph Beta 

Vsvsr 

Tr Vrr 

4. The ISU Format of the Scenario Control File for the New England System 

EXTENDED CONTINUATION POWER FLOW - VOLTAGE STABILITY ANALYSIS 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 
IOWA STATE UNIVERSITY 

BASE CASE: NEW ENGLAND 39 BUS 10 MACHINE TEST SYSTEM 

OUTAGES: none 

-999 
UNE RATING TO USE IN .ANALYSIS (1.2. OR 3) 
2 

LOCATION OF LOAD INCREASE FOR LOAD/GENERATION INCREASING SCENERIO( SCENARIO-!) 

INITIAL LOAD VALUE 

BUS NAME P(MW) Q(MVAR) 

BUS NUMBERS WHERE LOAD IS TO BE INCREASED aa 
3 
4 
7 
8 
12 
15 
16 
18 
20 
21 
23 
24 
25 
26 
27 
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28 
29 
39 
-999 

LOCATION OF GENERATION INCREASE FOR LOAD/GENERATION INCREASING ( SCENARIO-! ) 

BUS NAME AREA OUTPVRMW) INCREASING RATE % 

s# BUS NUMBER WHERE GENERATOR WILL SUPPLY MORE POWER =# 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
-999 

LOCATION OF REACTIVE LOAD FOR REACTIVE LOAD INCREASING SCENERIO ( SCENARIO-2) 

INITIAL LOAD VALUE 

BUS NAME P(MW) Q(MVAR) 

so BUS NUMBERS WHERE REACTIVE LOAD IS TO BE ADDED «* 
-999 

LOCATION OF EXPORTING UNITS FOR IMPORT/EXPORT SCENERIO (SCENARIO-3) 

BUS NAME AREA OUTPLT(MW) % EXPORT RATE (INCREASING) 

e# BUS NUMBER. SCALING FACTOR = 
-999 

LOCATION OF IMPORTING UNITS FOR IMPORT-EXPORT SCENERIO (SCENARIO-3) 

BUS NAME AREA OUTPUT(MW) % IMPORT RATE (DECREASING) 

mt BUS NUMBER. SCALING FACTOR ** 
999 

LOCATION OF LOAD INCREASE FOR LOAD/IMPORT SCENERIO (SCENARIO-4) 

INITIAL LOAD VALUE 

BUS NAME P(MW) Q(MVAR) 

## BUS NUMBERS WHERE LOAD IS TO BE INCREASED AND SERVED FROM OUTSIDE ** 
-999 

LOCATION OF GENERATION INCREASE FOR LOAD/IMPORT SCENERIO 

BUS NAME AREA OUTPUT(MW) % IMPORTED RATE 

## BUS NUMBER. SCALING FACTOR ## 
-999 0 
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LOCATION OF BUSES FOR REAL & REACTIVE LOAD SHEDDING 
BUS PL% QL% 

3 0 0 
4 0 0 
7 0 0 
8 0 0 
12 0 0 
15 0 0 
16 0 0 
18 0 0 
20 0 0 
21 0 0 
23 0 0 
24 Q 0 
25 0 0 
26 0 0 
27 0 0 
28 0 0 
29 0 0 
39 100 100 
-999 0 0 

DEFINITION OF SYSTEM ADJUSTMENTS FOR PREVENTIVE CONTROL 
G# VREF PCS VR MAX 

===== 

30 0.00 0.00 0.00 0.00 
31 0.00 0.00 0.00 0.00 
32 0.00 o.oo 0.00 0.00 
33 0.00 0.00 0.00 0.00 
34 0.00 OOO 0.00 0.00 
35 0.00 0.00 0.00 0.00 
36 0.00 0.00 0.00 0.00 
37 OOO 0.00 0.00 0.00 
38 0.00 0.00 0.00 0.00 
39 0.00 0.00 0.00 0.00 
-999 0 0 0 0 

BUSES TO MONITER 

BUS NAME AREA 

BUS NUMBERS s= 
30 
32 
33 
34 
35 
36 
37 
38 
39 
•999 
1) ESTIMATE OF MULTIPLE OF ORIGINAL LOAD FOR COLLAPSE..OR.. 
2) ESTIMATE OF (MVAR) OF REACTIVE LOADING BEFORE COLLAPSE..OR.. 
3) ESTIMATE OF(MW) OF INCREASED INTERCHANGE BEFORE COLLAPSE..OR.. 
4) ESTIMATE OF MULTIPLE OF ORIGINAL LOAD FOR COLLAPSE FOR LOAD/IMPORT 
2.0 
DESIRED VALUE OF LAMBDA AT CRITICAL POINT 
0J0 
CONVERGENCE TOLERENCE FOR POWER FLOW 
O OO I 
MAXIMUM NUMBER OF ITERATIONS ALLOWED 
80 
NUMBER OF WEAK BUSES TO MONTTER 
10 
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